Robust Space-Time Footsteps for Agent-Based
Steering

Glen Berseth

University of British Columbia

Mubbasir Kapadia
Rutgers University

Petros Faloutsos
York University

Abstract

Recent agent-based steering methods aban-
don the standard particle abstraction of an
agent’s locomotion abilities and employ more
complex models from timed footsteps to
physics-based controllers. These models often
provide the action space of an optimal search
method that plans a sequence of steering actions
for each agent that minimize a performance cri-
terion. The transition from particle-based mod-
els to more complex models is not straightfor-
ward and gives rise to a number of technical
challenges. For example, a disk geometry is
constant, symmetric and convex, while a foot-
step model maybe non-convex and dynamic. In
this paper, we identify general challenges asso-
ciated with footstep-based steering approaches
and present a new space-time footstep planning
steering model that is robust to challenging sce-
nario configurations.

Keywords: Crowd Simulation, Footsteps, Plan-
ning and Analysis

1 Introduction

While traditionally sliding particle models have
been the standard for crowd simulation, there
has been recent interest in footstep-based steer-
ing. Footstep-based models do not suffer from
the footskate issue, where feet turn or slide while
in contact with the ground. They can easily in-
corporate dynamic representations of the agent’s
body and thus achieve denser crowd packing [1].

While footstep-based steering is known to re-
move many artifacts from the problem of map-
ping human motion to the steering behaviour,
there are still a number of challenges researchers
face when adopting more complex agent mod-
els. In a standard footstep-based steering ap-
proach, an A* algorithm is used to find opti-
mal paths from the agent’s current location to
the agent’s target location as a sequence of foot-
steps. Yet, how do we know the types of foot-
steps to use or what is a good stepping distance
range, or even how should we initially configure
an agent to ensure it can reach its target?

We focus on the issue of making a footstep-
based steering algorithm resilient to environ-
ment configuration. Specifically, we present
a robust footstep-based steering algorithm to
avoid invalid initial configuration and to prune
undesirable and potentially unsound short term
goal states.

This is done in two steps. First, geometric
checks are used when adding an agent to a sce-
nario, ensuring the agent can make an initial
step. Second, we add constrained random foot-
steps to handle cases where pre-defined step in-
tervals can result in an inability to find a plan.
These, together with the properties of the A*
search method, construct a more robust steering
strategy.

2 Related Work

Sliding particle methods [2, 3] model the agent
as a disk centred at the particle’s location. There

are a number of issues when driving bipedal
characters with only position information. Slid-
ing disks can instantly change their forward di-
rection, which is not natural for a biped. For
people, complex interactions occur at doorways
where tendency is to step aside for oncoming
traffic, both disc models may try to push through
the doorway at the same time. Resulting in
an unusual sliding contact motion between the
agent. Footstep-based models do not suffer from
these issues and have been used in dynamic en-
vironments [4].

Footstep-based planning is used by both the
computer animation community [1] and the
robotics community. This work uses a similar
method to both of these works but focuses on
creating an algorithm that can endure random
environment layouts and agent state configura-
tions.

3 Initial Agent Placement

Extracting a valid plan to for a footstep-based
steering agent is still a poorly understood prob-
lem; an infinite number of possible plans exists
that could lead the agent to its target. To under-
stand the conditions necessary to ensure a plan
can be found we must analyze the problem in-
ductively.

A scenario s is a collection of agents A and
obstacles O. In traditional crowd simulation the
geometry of an agent is a disk. In footstep-based
models the geometry for an agent is dynamic de-
pending on the current state of the agent. This
dynamic geometry suffers from complex config-
urations that can result in an invalid state where
the agent can not proceed without colliding with
an obstacle.

To add agents to a scenario, particular loca-
tions could be hand selected but the most ver-
satile method would be to add agents randomly.
In order to add an agent to a scenario two prop-
erties must be satisfied. The first, which is true
for any type of crowd simulation algorithm, is
that the agent must not overlap any items in the
scenario. A footstep-based model needs an ad-
ditional check to make sure the agent can make
a footstep from its initial configuration. Given
the forward direction of the agent, a rectangular
region can be traced out in front of the agent.

An example initial geometry check is illustrated
in Figure 1(b) that detects overlap with nearby
obstacles. These two properties together ensure
that the agent does not start intersecting any ge-
ometry and will be able to make an initial step.

4 Robust Footstep Planning

In a footstep-based steering method, a plan is
computed between two locations that is free of
collisions. The actions in the plan can be under-
stood as a sequence of footstep actions in space-
time (stepo...step,).

The state of a footstep-based agent is defined
as

St = {(x,y),(X,y),(fx,fy),f¢,1E {L,R}}. (1)

Where (x,y) and (x,y) are the position and ve-
locity of the centre of mass. The current foot-
step is described by the location (f, fy), orien-
tation fy, and foot I € {L,R}. Potential actions
are created, using an inverted pendulum model,
between states by considering an action with ori-
entation ¢, velocity and time duration. Each step
has a cost related to step length and ground re-
action forces. The heuristic function is then a
combination of the expected cost of the step and
the number of steps left to reach the goal.

4.1 Improved Footstep Sampling

The A* planning algorithm in a footstep-based
steering model is used to compute safe naviga-
tion decisions during simulation. The successor
states that are generated using an A* model can
be ad-hoc, with different footstep angles and du-
rations at fixed intervals [1]. However, there is
an infinite number of geometry combinations in
a scenario and it is simple to construct an ex-
ample scenario where an ad-hoc method can not
find a valid step when many exist. To make the
planning system more robust, randomized foot-
steps are introduced. The randomized angle ori-
entations (in radians) and step time lengths are
limited to be between 0.3 and 1.3. An example
is shown in Figure 1(c), where an agent starts
in a corner and can escape after a feasable ran-
dom step is generated. By adding randomized
step angles and step distances, the algorithm
achieves better theoretical properties for steer-
ing in any possible scenario configuration.

(b)

\

%\@)

(d)

Figure 1: Corner cases that are avoided by the
robust algorithm. The left foot is blue,
the right green, the dashed box is the
geometry overlap check and the green
star is a generated waypoint. The navy
blue squares are obstacles.

4.2 Finite Horizon Planning

When planning is used, the path found is guar-
anteed to be sound from beginning to end. How-
ever, it is common to mix long range global
planning with a more dynamic finite horizon
planing between waypoints. When using finite
horizon planning, the final state of the com-
posed plan can put the agent in a state were the
agent can not make a step. An example of an
agent getting stuck straddling an obstacle is il-
lustrated in Figure 1(a). These invalid states can
be avoided by applying the same configuration
checks used when an agent is randomly placed
in a scenario, at the end of every short term plan.

Additional optimizations can be placed on
short term planning to improve efficiency and
fitness. The first of these is to never execute the
final action in a short term plan unless that action
is a final goal state. The geometry configuration
validation ensures there will be a possible foot-
step, but re-planning one step earlier results in a
more realistic plan.

4.3 Additional Footstep Types

The last feature of the planning system is a new
footstep style. In lieu of common forward step-

ping at different angles, footsteps that simulate
in-place turning can be used. In-place turning is
done by allowing the agent to take steps where
the agent’s heels are close, with the feet being
nearly perpendicular or the next stance foot is
placed pointing inward, as shown in Figure 1(d).

5 Analysis and Results

A group of metrics similar to [5] are used to
compare footstep-based algorithms. These met-
rics use the concept of a reference-agent, Other
agents added to the scenario make the sce-
nario more challenging for the reference-agent.
Scenario specific metrics are defined and then
aggregate metrics over a sizable sampling of
10,000 scenarios (S) are used.

For a single scenario s, when the reference-
agent reaches its target location before the max
simulation time expires', completed is 1 and 0
otherwise. The second metric, solved, is 1 when
completed is 1 and the reference-agent reaches
its target location without any collisions, other-
wise solved = 0. These metrics are aggregated
over S with completion = Y .gcompleted(s)
and coverage =Y cgsolved(s). An average of
completed is used over all agents in a scenario
as all-completed that is equal to the percent-
age of agents in the simulation that have com-
pleted = 1. Similarly, all-solved is an average
for solved. To measure computational perfor-
mance, the time spent simulating S is computed,
denoted as simTime.

Three versions of footstep-based algorithms
are compared. The first version is a common
footstep-based method baseline [1]. The sec-
ond version, baseline-with-randomization, is the
baseline method with randomized footstep ac-
tions. The final version of the algorithm, robust,
includes both randomized footstep actions and
geometric checks. Using a combination of met-
rics, comparisons are made as to the effective-
ness of each footstep-based algorithm. The re-
sults of these comparisons can be seen in Fig-
ure 2.

Notably, the largest increase in fitness comes
from adding randomness and in-place turning to
the algorithm. These two features together al-

'We give an agent more than enough time to navigate
around the boundary of the scenario twice.

Algorithm Comparison

Baseline Baseline with randomization Robust
algorithm

Figure 2: A comparison of three footstep-based
algorithms, using five performance
metrics.

low the algorithm to generate a wider variety of
possible footsteps and increase coverage from
37% to 81%. Adding geometry checks to the
algorithm increases the overall completion to a
perfect 100% from an original 46%. The robust
version of the algorithm is surprisingly capable.
After simulating ~ 45,100 agents, only ~ 150
agents do not reach their target locations.

The robust algorithm has significant compu-
tational performance improvements over base-
line. By using random footstep actions, the algo-
rithm explores the search space more resource-
fully, avoiding locally optimal regions in favour
of smoother, lower effort, plans. With geometri-
cal checks pruning undesired branches from the
search space, the final algorithm simulates the
10,000 scenarios in ~ 1/5 the time.

6 Conclusion

A more sound footstep-based steering method
has been presented. This method has been ana-
lyzed and compared to a common version of the
algorithm using numerical analysis with metrics
for completion and coverage. The new method
is found to be excellent at avoiding invalid states
and almost perfect at completing simulations.
The most significant improvement to the algo-
rithm comes from adding random and in-place
stepping features. These new features also in-
crease the computational performance of the al-
gorithm, as undesired search areas are avoided.

Limitations A simple rectangular geometry is
used to validate initial configurations. It might
be possible to achieve 100% all-completed by
using a more complex geometry check. Other
metrics could be used to compare the algo-

rithms, such as ground truth similarity.

Future Work Any-time planning algorithms
could be used to increase the acceptability of
footstep-based steering methods. It is possible
to further increase the coverage of the algorithm
using a method such as [6] to optimize the pa-
rameters of the steering algorithm.

References

[1] Shawn Singh, Mubbasir Kapadia, Glenn
Reinman, and Petros Faloutsos. Footstep

navigation for dynamic crowds. CAVW,
22(2-3):151-158, 2011.

[2] Shawn Singh, Mubbasir Kapadia, Petros
Faloutsos, and Glenn Reinman. An open
framework for developing, evaluating, and
sharing steering algorithms. In MIG, pages
158-169, 20009.

[3] Mubbasir Kapadia, Shawn Singh, William
Hewlett, and Petros Faloutsos. Egocen-
tric affordance fields in pedestrian steering.
In ACM SIGGRAPH I3D, pages 215-223,
2009.

[4] Mubbasir Kapadia, Alejandro Beacco,
Francisco Garcia, Vivek Reddy, Nuria
Pelechano, and Norman I. Badler. Multi-
domain real-time planning in dynamic
environments. SCA ’13, pages 115-124,
New York, NY, USA, 2013. ACM.

[5S] Mubbasir Kapadia, Matthew Wang, Shawn
Singh, Glenn Reinman, and Petros Falout-
sos. Scenario space: Characterizing cov-
erage, quality, and failure of steering algo-
rithms. In ACM SIGGRAPH/EG SCA, 2011.

[6] G. Berseth, M. Kapadia, B. Haworth, and
P. Faloutsos. SteerFit: Automated Param-
eter Fitting for Steering Algorithms. In
Vladlen Koltun and Eftychios Sifakis, edi-
tors, Proceedings of ACM SIGGRAPH/EG
SCA, pages 113-122, 2014.

