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Abstract

Can we use reinforcement learning to learn general-purpose policies that can
perform a wide range of different tasks, resulting in flexible and reusable skills?
Contextual policies provide this capability in principle, but the representation of
the context determines the degree of generalization and expressivity. Categorical
contexts preclude generalization to entirely new tasks. Goal-conditioned policies
may enable some generalization, but cannot capture all tasks that might be desired.
In this paper, we propose goal distributions as a general and broadly applicable
task representation suitable for contextual policies. Goal distributions are general
in the sense that they can represent any state-based reward function when equipped
with an appropriate distribution class, while the particular choice of distribution
class allows us to trade off expressivity and learnability. We develop an off-policy
algorithm called distribution-conditioned reinforcement learning (DisCo RL) to
efficiently learn these policies. We evaluate DisCo RL on a variety of robot
manipulation tasks and find that it significantly outperforms prior methods on tasks
that require generalization to new goal distributions.

1 Introduction

Versatile, general-purpose robotic systems will require not only broad repertoires of behavioral skills,
but also the faculties to quickly acquire new behaviors as demanded by their current situation and
the needs of their users. Reinforcement learning (RL) in principle enables autonomous acquisition
of such skills. However, each skill must be learned individually at considerable cost in time and
effort. In this paper, we instead explore how general-purpose robotic policies can be acquired by
conditioning policies on task representations. This question has previously been investigated by
learning goal-conditioned or universal policies, which take in not only the current state, but also
some representation of a goal state. However, such a task representation cannot capture many of the
behaviors we might actually want a versatile robotic system to perform, since it can only represent
behaviors that involve reaching individual states. For example, for a robot packing items into a box,
the task is defined by the position of the items relative to the box, rather than their absolute locations
in space, and therefore does not correspond to a single state configuration. How can we parameterize
a more general class of behaviors, so as to make it possible to acquire truly general-purpose policies
that, if conditioned appropriately, could perform any desired task?

To make it possible to learn general-purpose policies that can perform any task, we instead consider
conditioning a policy on a full distribution over goal states. Rather than reaching a specific state, a
policy must learn to reach states that have high likelihood under the provided distribution, which
may specify various covariance relationships (e.g., as shown in Figure [T} that the position of the
items should covary with the position of the box). In fact, we show that, because optimal policies are
invariant to additive factors in reward functions, arbitrary goal distributions can represent any state-
dependent reward function, and therefore any task. Choosing a specific distribution class provides a
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Figure 1: We infer the distribution parameters w from data and pass it to a DisCo policy. Distribution-conditioned
RL can express a broad range of tasks, from defining relationships between different state components (top) to
more arbitrary behavior (bottom).

natural mechanism to control the expressivity of the policy. We may choose a small distribution class
to narrow the range of tasks and make learning easier, or we may choose a large distribution class to
expand the expressiveness of the policy.

Our experiments demonstrate that distribution-conditioned policies can be trained efficiently by
sharing data from a variety of tasks and relabeling the goal distribution parameters, where each
distribution corresponds to a different task reward. Lastly, while the distribution parameters can be
provided manually to specify tasks, we also present two ways to infer these distribution parameters
directly from data.

The main contribution of this paper is DisCo RL, an algorithm for learning distribution-conditioned
policies. To learn efficiently, DisCo RL uses off-policy training and a novel distribution relabeling
scheme. We evaluate on robot manipulation tasks in which a single policy must solve multiple tasks
that cannot be expressed as reaching different goal states. We find that conditioning the policies on
goal distributions results in significantly faster learning than solving each task individually, enabling
policies to acquire a broader range of tasks than goal-conditioned methods.

2 Related Work

In goal-conditioned RL, a policy is given a goal state, and must take actions to reach that state [[18] 43|
350 17,1381 1300 13141514 139, [17]]. However, as discussed previously, many tasks cannot be specified with
a single goal state. To address this, many goal-conditioned methods manually design a goal space
that explicitly excludes some state variables [[1, 26} 140} [13} 37} 5]], for example by only specifying the
desired location of an object. This requires manual effort and user insight, and does not generalize to
environments with high-dimensional state representations, such as images, where manually specifying
a goal space is very difficult. With images, a number of methods learn latent representations for
specifying goal states [23| 31} 39132, [33]], which makes image-based goals more tractable, but does
not address the representation issues discussed above. Our work on goal distributions can be seen as
a generalization of goal state reaching. Reaching a single goal state g is equivalent to maximizing
the likelihood of a delta-distribution centered at g, and ignoring some state dimensions is equivalent
to maximizing the likelihood of a distribution that places uniform likelihood across the respective
ignored state variables. But more generally, goal distributions capture the set of all reward functions,
enabling policies to be conditioned on arbitrary tasks.

A number of prior methods learn rewards [49. 15] or policies [48), 144, [27,[11] using expert trajectories
or observations. In this work, we also demonstrate that we can use observations to learn reward
functions, but we have different objectives and assumptions as compared to prior work. Many of
these prior methods require state sequences from expert demonstrations [48}, 44} 27, |11]], whereas our
work only requires observations of successful outcomes to fit the goal distribution. Fu et al. [[15] also
only uses observations of successful outcomes to construct a reward function, but focuses on solving
single tasks or goal-reaching tasks, whereas we study the more general setting where the policy is
conditioned on a goal distribution.



Parametric representations of rewards have also been in the context of successor features [22} 2| 14} 3],
which parameterize reward functions as linear combinations of known features. We present a general
framework in which arbitrary rewards can be represented as goal distributions rather than feature
weights, and also demonstrate that these goal distributions can be learned from data.

Prior work on state marginal matching [24] attempts to make a policy’s stationary distribution match
a target distribution to explore an environment. In our work, rather than matching a target distribution,
we use the log-likelihood of a goal distributions to define a reward function, which we then maximize
with standard reinforcement learning.

3 Background

Reinforcement learning (RL) frames reward maximization in a Markov decision process (MDP),
defined by the tuple M = (S, A, 7, p,po, ) [46]], where S denotes the state space and .4 denotes
the action space. In each episode, the agent’s initial state sy € S is sampled from an initial state
distribution sy ~ pp(sp), the agent chooses an action a € A according to a stochastic policy
a; ~ 7(+|s¢), and the next state is generated from the state transition dynamics s;11 ~ p(- | s¢, a¢).
We will use 7 to denote a trajectory sequence (So, ag, S1, - - . ) and denote sampling as 7 ~ 7 since
we assume a fixed initial state and dynamics distribution. The objective of an agent is to maximize
the sum of discounted rewards, E, . [0, 7'r(ss, ar)].

Off-policy, temporal-difference algorithms. Our method can be used with any off-policy temporal-
difference (TD) learning algorithm. TD-learning algorithms only need (s;, a, 7+, S¢+1) tuples to train
a policy, where a; is an action taken from state s;, and where r; and s, are the resulting reward
and next state, respectively, sampled from the environment. Importantly, these tuples can be collected
by any policy, making it an off-policy algorithm. These tuples are typically sampled from a replay
buffer R, which consists of tuples generated by all previous environment interactions.

4 Distribution-Conditioned Reinforcement Learning

In this section, we show how conditioning policies on a goal distribution results in a MDP that
can capture any set of reward functions. Each distribution represents a different reward function,
and so choosing a distribution class provides a natural mechanism to choose the expressivity of the
contextual policy. We then present distribution-conditioned reinforcement learning (DisCo RL), an
off-policy algorithm for training policies conditioned on parametric representation of distributions,
and discuss the specific representation that we use.

4.1 Generality of Goal Distributions

We assume that the goal distribution is in a parametric family, with parameter space €, and augment
the MDP state space with the goal distribution, as in S’ = S x ). At the beginning of each episode, a
parameter w € € is sampled from some parameter distribution p,,. The parameter w defines the goal
distribution p,(s; w) : S — Ry over the state space. The policy is conditioned on this parameter, and
is given by 7(- | s,w). The objective of a distribution-conditioned (DisCo) policy is to reach states
that have high log-likelihood under the goal distribution, which can be expressed as

mEXETNﬂHs,w) Z’yt log pg(se;w) | - (1)
t
This formulation can express arbitrarily complex distributions and tasks, as we illustrate in [Figure T}

More formally:

Remark 1 Any reward maximization problem can be equivalently written as maximizing the log-
likelihood under a goal distribution (Equation 1)), up to a constant factor.

This statement is true because, for any reward function of the form r(s), we can define a distribution

py(s) oc €"®), from which we can conclude that maximizing log p, (s) is equivalent to maximizing
r(s), up to the constant normalizing factor in the denominator. If the reward function depends on



the action, r(s, a), we can modify the MDP and append the previous action to the state § = [s, a],
reducing it to another MDP with a reward function of the form ().

Of course, while any reward can be expressed as the log-likelihood of a goal distribution, a specific
fixed parameterization py(s;w) may not by itself be able to express any reward. In other words,
choosing the distribution parameterization is equivalent to choosing the set of reward functions that
the conditional policy can maximize. As we discuss in the next section, we can trade-off expressivity
and ease of learning by choosing an appropriate goal distribution family.

4.2 Goal Distribution Parameterization

Different distribution classes represent different types of reward functions. To explore the different
capabilities afforded by different distributions, we study three families of distributions.

Gaussian distribution A simple class of distributions is the family of multivariate Gaussian.
Given a state space in R”, the distribution parameters consists of two components, w = (u, %),
where p € R™ is the mean vector and ¥ € R™*" is the covariance matrix. When inferring the
distribution parameters with data, we regularize the ¥ ~! matrix by thresholding absolute val-
ues below ¢ = 0.25 to zero. With these parameters, the reward from is given by
r(s;w) = —0.5(s — u)TX"1(s — 1), where we have dropped constant terms that do not depend on
the state s. This simple parameterization can express a large number of reward functions. Using this
parameterization, the weight of individual state dimensions depend on the values along the diagonal
of the covariance matrix. By using off-diagonal covariance values, this parameterization also captures
the set of tasks in which state components need to covary, such as when the one object must be placed
near another one, regardless of the exact location of those objects (see the top half of [Figure TJ).

Gaussian mixture model A more expressive class of distributions that we study is the Gaussian
mixture model with 4 modes, which can represent multi-modal tasks. The parameters are the mean
and covariance of each Gaussian and the weight assigned to each Gaussian distribution. The reward
is given by the log-likelihood of a state.

Latent variable model To study an even more express class of distribution, we consider a class of
distributions parameterized by neural networks. Distributions parameterized by neural networks can
be extremely expressive [8} 150], but distributions based on neural networks often have millions of
parameters [8 [20].

To obtain an expressive yet compact parameterization, we consider non-linear reparameterizations of
the original state space. Specifically, we model a distribution over the state space using a Gaussian
variational auto-encoder (VAE) [19,42]. Gaussian VAEs model a set of observations using a latent-
variable model of the form p(s) = [, p(z)py, (s | z)dz, where z € Z = R are latent variables
with dimension d,. The distribution p,, is a learned generative model or “decoder” and p(z)
is a standard multivariate Gaussian distribution in R%=. A Gaussian VAE also learns a posterior
distribution or “encoder” that maps states s onto Gaussian distributions in a latent space, given by
qy. (2;8). We refer readers to Doersch [9]] for a detailed explanation of VAEs.

Gaussian VAEs are explicitly trained so that Gaussian distributions in a latent space define distribu-
tions over the state space. Therefore, we represent a distribution over the state space with the mean
- € R?% and variances o, € R? of a diagonal Gaussian distribution in the learned, latent space,
which we write as A/ (z; p,, o). In other words, the parameters w = (u, o) define the following
distribution over the states:

py(s10) = /Z N (2 12,0 )ps, (s | 2)dz, @)

where py, (s | z) is the generative model from the VAE. Because z resides in a learned latent space,
the set of reward functions that can be expressed with Equation (2)) includes arbitrary non-linear
transformations of s.



S Learning Goal Distributions and Policies

Given any of the distribution classes mentioned above, we now consider how to obtain a specific
goal distribution parameter w and train a policy to maximize Equation (T)). We start with obtaining
goal distribution parameters w. While a user can manually select the goal distribution parameters
w, this requires a degree of user insight, which can be costly or practically impossible if using the
latent representation in Equation (2). We discuss two automated alternatives for obtaining the goal
distribution parameters w.

5.1 Inferring Distributions from Examples

One simple and practical way to specify a goal distribution is to provide K example observations
{sk}f:1 in which the task is successfully completed. This supervision can be easier to provide
than full demonstrations, which not only specify the task but also must show how to solve the task
through a sequence of states (s1,Sg, ... ) or states and actions (s, a1, S, . .. ). Given the example
observations, we describe a way to infer the goal parameter based on the parameterization.

If w represents the parameters of a distribution in the state space, we learn a goal distribution via
maximum likelihood estimation (MLE), as in

K

w* = argmaleogpg(sk;w), 3)
we o

and condition the policy on the resulting parameter w*.

If w represents the parameters of a distribution in the latent space, we need a Gaussian distribution
in the latent space that places high likelihood on all of the states in Dgyyps- We obtain such a
distribution by finding a latent distribution that minimizes the KL divergence to the mixture of
posteriors % >, gy, (w; si). Specifically, we solve the problem

1
w* = argmin D — .(z;s z;w) |, 4)
8 min Dy, (K zk: Gy (z;51) || P( ))

where (2 is the set of all means and diagonal covariance matrices in R% . The solution to Equation (4)
can be computed in closed form using moment matching [128]].

5.2 Dynamically Generating Distributions via Conditioning

We also study a different use case for training a DisCo policy: automatically decomposing long-
horizon tasks into sub-tasks. Many complex tasks lend themselves to such a decomposition, and
learning each of these sub-tasks can be significantly faster than directly solving the main task. For
example, a robot that must arrange a table can divide this task into placing one object to a desired
location before moving on to the next object. To automatically decompose a task, we need to convert
a “final task,” represented as 7, into M different sub-tasks, where M is the number of sub-tasks
needed to accomplish the final task. Moreover, rather than training a separate policy for each sub-task,
we would like to train a single policy that can accomplish all of these sub-tasks. How can we convert
a task parameter 7 into different sub-tasks, all of which can be accomplished by a single policy?

We can address this question by train- 1 1
ing a DisCo policy. A task represented % q s} p—  —p pislsh)

by parameters 7 can be decomposed
- (5|5 red block x-position

into a sequence of sub-tasks, each :
of which in turn is represented by a 7! bt o % —_ p(sls2)
goal distribution. We accomplish this 1 .k g N
by learning conditional distributions, e lock xepestion
Py (s | T): conditioned on some fi- Figure 2: A robot must arrange objects into a configuration s that
nal task 7, the conditional distribu- changes from episode to episode. This task consists of multiple
tion p; (s | T) is a distribution over sub-tasks, such as first moving the red object to the correct location.
desired states for sub-task 7. Given a final state sy, there exists a distribution of intermediate
states s in which the first sub-task is completed. We use pairs of
To obtain a conditional distribution states s, s to learn a conditional distribution that defines the first
Py (s | T) for sub-task ¢, we assume sub-task given the final task, p(s | sy).



access to tuples D’ = {(8®), TH)HE  where s(*) is an example state in which sub-task i is

accomplished for solving task 7(%). See Figure [2|for a visualization. Our experiments test the setting
where final tasks are represented by a final state sy that we want the robot to reach, meaning that
T = sz. We note that one can train a goal-conditioned policy to reach this final state s ¢ directly, but,
as we will discuss in Section[6] this decomposition significantly accelerates learning by exploiting
access to the pairs of states.

For each 4, and dropping the dependence on 7 for clarify, we learn a conditional distribution, by fitting
a joint Gaussian distribution, denoted by ps s (s, sf; 4, X2), to these pairs of states using MLE, as in

K

P o = arg max > logpss, (5™, s, 3). 5)
’ k=1

This procedure requires up-front supervision for each sub-task during training time, but at test time,
given a desired final state sy, we compute the parameters of the Gaussian conditional distribution
pg(s | s¢; u*, E*) in closed form. Specifically, the conditional parameters are given by

fi = p + S12555 (S5 — pia)

_ © (6)
Y =% — S12%0 Do,

where p; and po represents the first and second half of 1*, and similarly for the covariance terms.
To summarize, we learn p* and ¥* with Equation (3] and then use Equation (6) to automatically
transform a final task 7 = s into a goal distribution w = (f, 3) which we give to a DisCo policy.
Having presented two ways to obtain distributions, we now turn to learning DisCo RL policies.

5.3 Learning Distribution-Conditioned Policies

In this section, we discuss how to optimize using an off-policy TD algorithm. As
discussed in[Section 3] TD algorithms require tuples of state, action, next state, and reward, denoted
by (s¢, at, 7, St+1). To collect this data, we condition a policy on a goal distribution parameter w,
collect a trajectory with the policy 7 = [sg, ag, - - - |, and then store the trajectory and distribution
parameter into a replay buffer [29], denoted as R. We then sample data from this replay buffer to
train our policy using an off-policy TD algorithm. We use soft actor-critic as our RL algorithm [[16],
though in theory any off-policy algorithm could be used.

Because TD algorithms are off-policy, we propose to reuse data collected by a policy conditioned on
one goal distribution w to learn about how a policy should behave under another goal distribution w’.
In particular, given a state s sampled from a policy that was conditioned on some goal distribution
parameters w, we occasionally relabel the goal distribution with an alternative goal distribution
w’ = RS(s,w) for training, where RS is some relabeling strategy. For relabeling, given a state s
and existing parameters w = (u, ), we would like to provide a strong learning signal by creating a
distribution parameter that gives high reward to an achieved state. We used a simple strategy that
we found worked well: we replace the mean with the state vector s and randomly re-sampling the
covariance from the set of observed covariances as in RS(s, (i, X)) = (s,%’), where ¥/ is sampled
uniformly from the replay buffer. This relabeling is similar to relabeling methods used in goal-
conditioned reinforcement learning [18 1} 140,138} 130, 137, 131} [12]], but applied to goal distributions
rather than individual goal states.

We call the method DisCo RL when learning a distribution from examples and Conditional DisCo RL
when learning a conditional distribution. We summarize both in Algorithm ]

6 Experiments

Our experiments study the following questions: (1) How does DisCo RL with a learned distribution
compare to prior work that also uses successful states for computing rewards? (2) Can we apply
Conditional DisCo RL to solve long-horizon tasks that are decomposed into shorter sub-tasks? (3)
How do DisCo policies perform when conditioned on goal distributions that were never used for
data-collection? The first two questions evaluate the variants of DisCo RL presented in Section [5}
and the third question studies how well the method can generalize to test time task specifications. We
also include ablations that study the importance of the relabeling strategy presented in [Section 5.3]



Algorithm 1 (Conditional) Distribution-Conditioned RL

Require: Policy 7, Q-function @), TD algorithm .4, relabeling strategy RS, exploration parameter
distribution p,,, replay buffer R.
1: Compute w using Equation (4) or (5) (if unconditional).
2: for 0, ..., Nepisode — 1 episodes do
Sample sy and compute w with Equation (6).
Sample trajectory from environment 7 ~ 7(-|s; w) and store tuple (7, w) in replay buffer R.
for 0,..., Nypgaes — 1 steps do
Sample trajectory and parameter (7, w) ~ R.
Sample transition tuple (s¢, a¢, S¢+1) and a future state sy, from 7, where t < h.
With probability preraer, relabel w < RS(sp, w).
Compute reward r = log py(s¢; w) and augment states §; < [s¢; w], §141 < [Se1;wW).
Update Q4 and g using A and (8¢; a¢, 8441, 7).

e
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We study these questions in three simulated manipulation environments of varying complexity, shown
in We first consider a simple two-dimensional “Flat World” environment in which an agent
can pick up and place objects at various locations. The second environment contains a Sawyer robot,
a rectangular tray, and four blocks, which the robot must learn to manipulate. The agent controls the
velocity of the end effector and gripper, and the arm is restricted to move in a 2D plane perpendicular
to the table’s surface. Lastly, we use an IKEA furniture assembly environment from Lee et al. [23].
An agent controls the velocity of a cursor that can lift and place 3 shelves onto a pole. Shelves are
connected automatically when they are within a certain distance of the cursor or pole. The states
comprise the Cartesian position of all relevant objects and, for the Sawyer task, the gripper state.
For the Sawyer environment, we also consider an image-based version which uses a 48x48 RGB
image for the state. All plots show mean and standard deviation across 5 seeds, as well as optimal
performance (if non-zero) with a dashed line.

6.1 Learning from Examples pe 4 * \ ‘g

Our first set of experiments evaluates el

how well DisCo RL performs when Figure 3: Illustrations of the experimental domains, in which a
learning distribution parameters from policy must (left) use the blue cursor to move objects to different
a fixed set of examples, as described locations, (center) control a Sawyer arm to move cubes into and out
in Section [5.I] We test all three pa- of a tray, and (right) attach shelves to a pole using a cursor.
rameterizations from Section on

different environments: First, we evaluate DisCo RL with a Gaussian model learned via Equation (E])
on the Sawyer environment, in which the policy must move the red object into the bowl and ignore
three “distractor” objects. Second, we evaluate DisCo RL with a GMM model learned via Equa-
tion (3)) on the Flat World environment, where the agent must move a specific object to any one of
four locations. Lastly, we evaluate DisCo RL with a latent variable model learned via Equation (@)
on an image-based version of the Sawyer environment, where the policy must move the hand to a
fixed location and ignore visual distractions. This last experiment is done completely from images,
where manually specifying the parameters of a Gaussian in image-space would be impractical. The
experiments used between K = 30 to 50 examples for learning the goal distribution parameters. We
report the normalized final distance, where we normalize by the final distance achieved by a random
policy.

We compare to past work that uses example states to learn a reward function. Specifically, we compare
to variational inverse control with events (VICE) [15]], which trains a success classifier to predict
the user-provided example states as positive and replay buffer states as negative, and then uses the
log-likelihood of the classifier as a reward. We also include an oracle labeled SAC (oracle reward)
which uses the ground truth reward. Since VICE requires training a separate classifier for each task,
these experiments only test the methods on a single task. Note that a single DisCo RL policy can
solve multiple tasks by conditioning on different distribution parameters, as we will study in the next
section.

We see in[Figure 4]that DisCo RL often matches the performance of using an oracle reward and con-
sistently outperforms VICE. VICE often failed to learn, possibly because the method was developed
using hundreds to thousands of examples, where as we only provided 30 to 50 examples.



6.2 Conditional Distributions for Sub-Task Decomposition

Sawyer, Gaussian Flat World, GMM

The next experiments study how Condi- Sawyer(Image-Based), LVM

tional DisCo RL can automatically decom- 3os Sos S;Z\\
pose a complex task into easier sub-tasks. £°° Hos Sos/ ik

We design tasks that require reaching a de-  so: o2 S0
. 0.0
sired final state sy, but that can be decom- o 30 oo oo 2000 O% 2o 0 g0 w00 doe0  O% a0 o s 20 250

posed into smaller sub-tasks. The first task
requires controlling the Sawyer robot to
move 4 blocks with randomly initialized Figure 4: (Lower is better.) Learning curve showing nor-
positions into a tray at a fixed location. We malized distance versus environment steps of various method.
design analogous tasks in the IKEA envi- DisCo RL uses a (left) Gaussian model, (middle) Gaussian
ronment (with 3 shelves and a pole) and mixture model, or (right) latent-variant model on their respec-

: : : tive tasks. DisCo RL with a learned goal distribution con-
illzllto\f?\iggsi f[:al.ls\{g(z:rzlrr?eb{cltsgfi]iti};l t%_) gltl)lj)f—:fat:ll sistently outperforms VICE and obtains a final performance

. . . - . similar to using oracle rewards.
that involving moving a single object at a
time.

mmmm DisCo RL (ours) wwssw= VICE wmmmm SAC (oracle reward)

For each object i = 1, ..., M, we collect an example set D! .- As described in Section each
set D! sk contains K = 30 to 50 pairs of state (s, sy), in which object i is in the same location
as in the final desired state sy, as shown in Figure 2} We fit a joint Gaussian to these pairs using
Equation (3). During exploration and evaluation, we sample an initial state s, and final goal state
s uniformly from the set of possible states, and condition the policy on w given by Equation (6).
Because the tasks are randomly sampled, this setting also tested the ability for Conditional DisCo RL
to generalize to new goal distributions.

We evaluate how well DisCo RL can solve long-horizon tasks by conditioning the policy on each
pg(s | s¢) sequentially for H/M time steps. We report the cumulative number of tasks that were
solved, where each task is considered solved when the respective object is within a minimum distance
of its target location specified by s;. For the IKEA environment, we also consider moving the pole to
the correct location as a task. We compare to VICE which trains separate classifiers and policies for
each sub-task using the examples and also sequentially runs each policies for H/M time steps.

One can train a goal-conditioned policy to reach this final state sy directly, and so we compare
to hindsight experience replay (HER) [1]], which attempts to directly reach the final state for H
time steps and learns using an oracle dense reward. We see in [Figure 5|that Conditional DisCo RL
significantly outperforms VICE and HER and that Conditional DisCo RL successfully generalizes to
new goal distributions.

Sawyer IKEA Flat World
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Ablations Lastly, we include ablations
that test the importance of relabeling the
mean and covariance parameters during

training. We see in that relabeling =,
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bOth parameters, and particularly the mean, # Er}SDs(;]tepsz(xmoO) # Ensvogteps (xoloooo) 1900 ° # ;?R/ st?;?g(xﬁs(;]go) 2000
accelerates 1earning mmmm DisCo RL (ours) wmmmm HER (dense reward) mmmm Ours: no cov relabeling
: s \/ICE mmmm Ours: no mean relabeling

. . Figure 5: (Higher is better.) Learning curves showing the

7 Discussion number of cumulative tasks completed versus environment
steps for the Sawyer (left), IKEA (middle), and Flat World

We presented DisCo RL, a method for (right) tasks. We see that DisCo RL significantly outperforms
learning genera]_purpose policies Speciﬁed HER and VICE, and that relabeling the mean and covariance
using a goal distribution. Our experiments i important.
show that DisCo policies can solve a vari-
ety of tasks using goal distributions inferred from data, and can accomplish tasks specified by goal
distributions that were not seen during training. In this work, we studied Gaussian, Gaussian mixture,
and latent variable parameterizations of goal distributions using an existing dataset. An exciting
direction for future work would be to interleave DisCo RL and distribution learning, for example
by using newly acquired data to update the learned VAE or by backpropagating the DisCo RL loss
into the VAE learning loss. Another promising direction would be to study goal-distribution directed
exploration, in which an agent can explore along certain distribution of states, analogous to work on
goal-directed exploration [21} 10} 41, 139].
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A Generalization to Real-World Robots

While our experiments were only conducted in simulated environments, we expect DisCo RL to
generalize to real-world robots. We note that both goal-conditioned RL [31]] and VICE [45] have been
applied to real-world robot domains, and that[Figure 5| demonstrates that DisCo RL can significantly
outperform these methods in multi-task settings where tasks are not specified by single goals. We note
that these findings are consistent across all three simulated domains, suggesting that these results are
general properties of the methods and may apply to other domains, including real-world robotics. We
also note that the PyBullet simulator [6] has been successfully applied for sim-to-real transfer [47,36],
suggesting that strong performance in the simulator can generalize to real-world robots.

Lastly, in our experiments DisCo RL used 30 to 50 examples to learn goal distributions that specify
different robot tasks. Specifying such few number of example successful states is particularly practical
for real-world domains, where specifying tasks often requires manually specifying reward functions
or adding task-specific instrumentation and sensors.

B Environments

Sawyer This environment is based in the PyBullet [[6] physics simulator. It consists of a Sawyer
robot mounted next to a table, on top of which there is a tray and four blocks. The robot must learn to
manipulate the blocks via its gripper. The robot is controlled via position control, and it is restricted
to move in a 2D plane. Specifically, the robot arm can move in the YZ coordinate plane and the
gripper can open along the X axis, where the X, Y, Z axes move along the front-back, left-right,
and up-down directions of table, respectively. We also constrain the objects to move along the YZ
coordinate plane. The agent has access to state information, comprising of the position of the end
effector and gripper state, as well as the positions of the objects and tray.

Visual Sawyer We use the same environment as described above for the vision-based tasks but
replace the state with 48x48 RGB images. We pretrain a VAE on 5120 randomly generated images
and obtain the goal distribution using 30 example images. We visualize some example images in
Figure[6]

The encoder consist of a 3 convolutions with the following parameters

1. channels: 64, 128, 128
2. kernel size: 4,4, 3

3. stride: 2,2,2

4. padding: 1, 1, 1

followed by 3 residual layers each containing two convolutions with the following parameters

1. channels: 64, 64
2. kernel size: 3, 1
3. stride: 1, 1

4. padding: 1, 1

and two linear layers that projects the convolution output into the mean and log-standard deviation of
a Gaussian distribution in a latent dimension with dimension 64.

The decoder begins with a linear layer with the transposed shape as the final encoder linear layer,
followed by a reshaping into a latent image the same shape as the final encoder convolution output
shape. This latent image is put through a convolution (128 channels, kernel size 3, stride 1, padding 1),
and then an equivalent residual stack as the encoder, and two transposed convolutions with parameters

1. channels: 64, 64

2. kernel size: 4, 4

3. stride: 2, 1

4. padding: 2, 1
which outputs the mean of a Gaussian distribution with a fixed unit variance. We trained this VAE
with Adam with a learn rate of 10~2 and default PyTorch [34] parameters (51 = 0.9 and 52 = 0.999)
for 100 epochs and annealed the loss on the KL term from 0 to 1 for the first 20 epochs.
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Figure 6: Example images with the hand in a fixed position used to obtain a goal distribution.

IKEA We adapted this environment from the suite of furniture assembly environments developed
by Lee et al. [25]. In our environment, the agent must learn to attach a set of 3 shelves to a pole. It
can do so by controlling two end effectors: one end effector that can move the pole, and another end
effector that can move the shelves. The former end effector is always attached to the pole, while the
latter end effector can selectively attach and detach itself from the shelves. Both end effectors can
move via 3D position control, ina 1 x 1 x 1 area for a maximum of 0.05 units (in each direction)
per timestep. The end effector interfacing with the shelves can hold onto a shelf by applying a grasp
action when it is within the bounding box region of a shelf. Each shelf has a connection point at
which point it will attach to the pole, and the pole has a receiving connection point as well. When
these two connection points are within 0.2 units away from one another, the shelf automatically
attaches to the pole and becomes welded. The objects have 3 degrees of freedom via translations
in 3D space. The objects are not allowed to collide with one another — if an action causes them to
collide, that action is ignored by the environment and the next state is the same as the current state.
As an exception, when an end effector is not grabbing an object, it is allowed to move through objects.
The agent has access to state information, comprising the 3D position of the end effectors, shelves,
and the pole, and indicator information for whether each end effector is grasping an object.

Flat World This two-dimensional environment consists of a policy and 4 objects, each of which
are defined by their XY-coordinate. The policy and objects are in an enclosed 8 x 8 unit space.
The policy’s action space is three dimensional: two correspond to relative change in position, for a
maximum of 1 unit in each dimension per timestep, and one corresponds to a grab action. The grab
action takes on a value between —1 and 1. If this grab action is positive, then the policy picks up
the closest object that is within 1 unit of it, or none if there are no such objects. If this grab action
is non-positive, then the policy drops any object that it was holding. While an object is grabbed,
the object moves rigidly with the policy. The policy can only grab one object at a time, with ties
broken by a predetermined, fixed order. The agent has access to state information, comprising the 2D
position of the policy and the 4 objects.

C Experimental Details

Learning from Examples These experiments were evaluated on the Sawyer and FlatWorld en-
vironment. In this section we describe the setup for the Sawyer environment with Gaussian goal
distributions. In this setting, the agent needs to pick up one of the blocks (specifically, the red
block) and place it into the tray. The initial position of the tray and objects vary in each episode.
The objective is only to minimize the relative distance between the red block and the tray, and it is
important for the agent to ignore the absolute position of the other blocks and the tray. The robot can
attempt to slide the tray to a specific goal location, but the tray is heavy and moves very slowly. If it
successfully moves the tray to another location, it will not have enough time in the episode to move
the red block.

We generated K = 30 examples of successful goal states, in which the red block is always inside the
tray, and the tray, other objects, hand, and gripper are in random locations and configurations. We
provided this set of example goal states as input to the competing baselines. Each baseline used the
example states in the following manner:

e DisCo RL: infer a goal distribution from the example states
e VICE: a classifier is trained to predict whether a state is optimal, with the example states as
the positive examples for the classifier

For evaluation, a trajectory is successful if the red block is placed in the tray. We plot this success
metric over time in } 2
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Conditional Distributions for Sub-Task Decomposition For the multi-task evaluations, we per-
formed experiments in all three of our environments. For each environment, we split the task into
several subtasks, as described below:

e Sawyer: move the blocks to their goal locations. Each subtask represents moving one block
at a time to its goal location.

e IKEA: move the pole and the shelves to their goal locations. Each subtask represents moving
the pole and one of the shelves to their goal locations.

e Flat World: move the objects to their goal locations. Each subtask represents moving one
object at a time to its goal location.

We generated an example dataset of successful states for each subtask. For each example state for a
particular subtask, we also provided a state representing the final configuration for the entire task
(after all subtasks are solved). See for additional details regarding the example sets. The
evaluation metrics for each environment are as follows:

e Sawyer: the number of objects that are within 0.10 units of their respective final goal
locations

o IKEA: the number of shelves that are connected to the pole, in addition to an indicator for
whether the pole is within 0.10 units of its final goal location

o Flat World: the number of objects that are within 1 unit of their respective final goal locations

For evaluation, we provide the HER baseline oracle goals. In this setting, the provided goal is
identical to the initial state at the beginning of the episode, except for the position of the red block,
which we set to be inside the tray. For example, if the state is given by

EE , EE .red-block ,red-block ,.blue-block
71:0 )

— blue-block
So = [JCO » Y05 Lo » Yo el 7"'}7

Yo
and we want the red block to move to a position (z*, y*), we set the goal to

Sy = [:CISE, y(l;?E’ :L‘*, y*7 l.glue—block’ yglue»block7 . } .
In theory, this oracle goal encourages the robot to focus on moving the red block to its goal rather
than moving the other state components. The HER baseline only uses this oracle during evaluation.

Details regarding the distribution of final goal states used for exploration rollouts and relabeling
during training, are provided in[Table 1} For evaluation, we used H = 100 for the IKEA and Flat
World environments, and H = 400 for the Sawyer environment.

Goal Use Case | Sawyer IKEA Flat World
Exploration 50%:  objects on | Shelves assembled, | Objects in random
ground, 50%: objects | pole in random | positions
in tray position
Training Same as above Objects in random po- | Same as above
sitions

Table 1: Environment specific final goal distributions.

D Implementation Details

D.1 General Training Algorithm and Hyperparameters

In our experiments, we use soft actor-critic as our RL algorithm [[16]. For specific details on the
hyperparameters that we used, see[lable 3

Hyper-parameter Sawyer | IKEA | Flat World
Number of examples (per subtask) K 30 20 30
Std. dev. of Gaussian noise added to example set data 0.01 0.1 0.01

Table 2: Environment specific hyper-parameters.
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Hyper-parameter Value
horizon H (for training) 100
batch size 2048
discount factor 0.99
Q-function and policy hidden sizes [400, 300]
Q-function and policy hidden activations ReLU
replay buffer size 1 million
hindsight relabeling probability 80%
target network update speed T 0.001
number of training updates per episode Nupdates per episode 100
number of training batches per environment step 1

Table 3: General hyper-parameters used for all experiments.
D.2 DisCo RL

Covariance Smoothing We apply pre-preprocessing and post-processing steps to obtain the dis-
tribution parameters used in RL. In the pre-processing phase, we add i.i.d. Gaussian noise to the
dataset of examples. The amount of noise that we apply varies by environment — see for
specific details. After inferring the raw parameters of the Gaussian distribution p and ¥, we apply
post-processing steps to the covariance matrix. We begin by inverting the covariance matrix X. For
numerical stability, we ensure that the condition number of 3 does not exceed 100 by adding a
scaled version of the identity matrix to 3. After obtaining ¥ !, we normalize its components such
that the largest absolute value entry of the matrix is 1. Finally, we apply a regularization operation
that thresholds all values of the matrix whose absolute value is below 0.25 to 0. We found this
regularization operation to be helpful when the number of examples provided is low, to prevent the
Gaussian model from inferring spurious dependencies in the data. We used the resulting ;2 and X!
for computing the reward.

Conditional distribution details To obtain the conditional distribution used for relabeling and
multi stage planning, we assume that data is given in the form of pairs of states {(s(*), sgck))}ff:l, in

which s(*) correspond to a state where a sub-task is accomplished when trying to reach the final state
sy. We fit a joint Gaussian distribution of the form

- s Yss Vs, dim(S) dim(8) xdim(S)
e () [ E) e

to these pairs of states using maximum likelihood estimation. Since the joint distribution pg s, is

Gaussian, the conditional distribution pgs , is also Gaussian with parameters (i, 33) = h(s), where
h is the standard conditional Gaussian formula:

h(sf) = | us+ Ess.fz_1 (Sf - /'I‘Sf)v Ess - ESSfZ_l »Est . (7)

Sfsf SfSf

I b

In summary, given a final desired state sy, we generate a distribution by computing w = h(sy)

according to This conditional distribution also provides a simple way to relabel goal

distributions given a reached state s,: we relabel the goal distribution by using the parameters
!/

w' = h(s,).

Multi-task exploration scheme For training, in 50% of exploration rollouts we randomly selected
a single subtask for the entire rollout, and in the other 50% of exploration rollouts we sequentially
switched the subtask throughout the rollout, evenly allocating time to each subtask. For switching the
subtask, we simply switched the parameters of the subtask y and . We randomized the order of the
subtasks for sequential rollouts.

Relabeling We relabel the parameters of the goal distribution (i, X), and the relabeling strategy
we use depends on whether we use conditional goal distributions. For non-conditional distributions,
we relabel according to the following strategy:

e 40%: relabel p to a future state along the same collected trajectory
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For conditional distributions, we relabel according to the following strategy:

e 40%: randomly sample sy from the environment
o 40%: relabel s to a future state along the same collected trajectory

For our multi-task experiments, whenever we perform relabeling, we also relabel . Specifically,
we first randomly sample a task from the set of tasks that we have inferred, and relabel ¥ to the
covariance matrix for that task.

D.3 HER

Our implementation of goal-conditioned RL follows from hindsight experience replay (HER) [1]].
Crucially, we perform off-policy RL, in addition to using the relabeling strategies inspired by HER.
When provided a batch of data to train on, we relabel the goals according to the following strategy:

e 40%: randomly sampled goals from the environment, or the example sets
e 40%: future states along the same collected trajectory, as dictated by HER

Unlike HER, which used sparse rewards, we use the Euclidean distance as the basis for our reward
function:

r(s,89) = = [ls = sy ®)

To avoid manual engineering, the space of goals is the same as the space of states. L.e., the dimension
of the goal is the same as that of the state, and the corresponding entries in s and s, correspond to the
same semantic state features.

D4 VICE

Variational inverse control with events (VICE) is described in Fu et al. [15]. VICE proposes an
inverse reinforcement learning method that extends adversarial inverse reinforcement learning (AIRL)
Fu et al. [14]. Like AIRL, VICE learns a density py(s, a) using a classification problem. However,
unlike the usual IRL setting, VICE assumes access to an example set that specifies the task — the
same assumption as DisCo RL.

VICE alternates between two phases: updating the reward and running RL. To learn a reward function,
VICE solves a classification problem, considering the initial example set as positives and samples
from the replay buffer as negatives. The discriminator is:

po(s,a)

Do(s,a) = po(s,a) + w(als)’

€))
At optimality, the reward recovered pg (s, a) x 7*(a|s) = exp(A(s, a)), the advantage of the optimal
policy [14]. In practice the reward is represented as py(s), ignoring the dependence on actions.
However, actions are still needed to compute the discriminator logits; we follow the method specified
in VICE-RAQ [45] to sample actions from 7(a|s) for all states. We also use mixup [52]] as described
in VICE-RAQ. Mixup significantly reduces overfitting and allows VICE to successfully learn a
neural net classifier even with so few (30 to 50) positive examples. In the RL phase, VICE runs
reinforcement learning with log py (s, @) as the reward function, actively collecting more samples to
use as negatives.

We re-implemented VICE as above and confirmed that it successfully learns policies to reach a single
state, specified by examples. However, our results demonstrate that VICE struggles to reach the
example sets we use in this work. This issue is exacerbated when the problem is multi-task instead of
single-task and the state includes a goal, as in goal-conditioned learning.

In multi-stage tasks, we train a single DisCo RL policy shared among the stages. For VICE, sharing
data among different tasks would not respect the adversarial optimization performed by the method.
Instead, we train separate policies for each stage without sharing data between policies. Thus, for a
task with IV stages, VICE is generously allowed to experience /N x the data, as each policy collects
its own experience).
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