
DeepLoco: Dynamic Locomotion Skills Using
Hierarchical Deep Reinforcement Learning

XUE BIN PENG and GLEN BERSETH, University of British Columbia
KANGKANG YIN, National University of Singapore
MICHIEL VAN DE PANNE, University of British Columbia

Fig. 1. Locomotion skills learned using hierarchical reinforcement learning. (a) Following a varying-width winding path. (b) Dribbling a soccer ball. (c)
Navigating through obstacles.

Learning physics-based locomotion skills is a di�cult problem, leading
to solutions that typically exploit prior knowledge of various forms. In
this paper we aim to learn a variety of environment-aware locomotion
skills with a limited amount of prior knowledge. We adopt a two-level
hierarchical control framework. First, low-level controllers are learned that
operate at a �ne timescale and which achieve robust walking gaits that
satisfy stepping-target and style objectives. Second, high-level controllers
are then learned which plan at the timescale of steps by invoking desired
step targets for the low-level controller. The high-level controller makes
decisions directly based on high-dimensional inputs, including terrain maps
or other suitable representations of the surroundings. Both levels of the
control policy are trained using deep reinforcement learning. Results are
demonstrated on a simulated 3D biped. Low-level controllers are learned for
a variety of motion styles and demonstrate robustness with respect to force-
based disturbances, terrain variations, and style interpolation. High-level
controllers are demonstrated that are capable of following trails through
terrains, dribbling a soccer ball towards a target location, and navigating
through static or dynamic obstacles.

Additional Key Words and Phrases: physics-based character animation, mo-
tion control, locomotion skills, deep reinforcement learning

ACM Reference format:
Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017.
DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforce-
ment Learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 16 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073602

1 INTRODUCTION
Physics-based simulations of human skills and human movement
have long been a promising avenue for character animation, but it
has been di�cult to develop the needed control strategies. While
the learning of robust balanced locomotion is a challenge by itself,
further complexities are added when the locomotion needs to be
used in support of tasks such as dribbling a soccer ball or navigating
among moving obstacles. Hierarchical control is a natural approach

© 2017 ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in ACM
Transactions on Graphics, https://doi.org/http://dx.doi.org/10.1145/3072959.3073602.

towards solving such problems. A low-level controller (LLC) is de-
sired at a �ne timescale, where the goal is predominately about
balance and limb control. At a larger timescale, a high-level con-
troller (HLC) is more suitable for guiding the movement to achieve
longer-term goals, such as anticipating the best path through obsta-
cles. In this paper, we leverage the capabilities of deep reinforcement
learning (RL) to learn control policies at both timescales. The use
of deep RL allows skills to be de�ned via objective functions, while
enabling for control policies based on high-dimensional inputs, such
as local terrain maps or other abundant sensory information. The
use of a hierarchy enables a given low-level controller to be reused
in support of multiple high-level tasks. It also enables high-level
controllers to be reused with di�erent low-level controllers.

Our principal contribution is to demonstrate that environment-
aware 3D bipedal locomotion skills can be learned with a limited
amount of prior structure being imposed on the control policy. In
support of this, we introduce the use of a two-level hierarchy for
deep reinforcement learning of locomotion skills, with both levels
of the hierarchy using an identical style of actor-critic algorithm. To
the best of our knowledge, we demonstrate some of the most capable
dynamic 3D walking skills for model-free learning-based methods,
i.e., methods that have no direct knowledge of the equations of
motion, character kinematics, or even basic abstract features such
as the center of mass, and no a priori control-speci�c feedback
structure. Our method comes with its own limitations, which we
also discuss.

2 RELATED WORK
Modeling movement skills, locomotion in particular, has a long his-
tory in computer animation, robotics, and biomechanics. It has also
recently seen signi�cant interest from the machine learning com-
munity as an interesting and challenging domain for reinforcement
learning. Here we focus only on the most closely related physics-
based work in computer animation and reinforcement learning.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

https://doi.org/http://dx.doi.org/10.1145/3072959.3073602

41:2 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

Physics-based Character Control: A recent survey on physics-
based character animation and control techniques provides a com-
prehensive overview of work in this area [Geijtenbeek and Pronost
2012]. An early and enduring approach to controller design has been
to structure control policies around �nite state machines (FSMs)
and feedback rules that use a simpli�ed abstract model or feed-
back law. These general ideas have been applied to human athletics
and running [Hodgins et al. 1995] and a rich variety of walking
styles [Coros et al. 2010; Lee et al. 2010; Yin et al. 2007]. Many
controllers developed for physics-based animation further use op-
timization methods to improve controllers developed around an
FSM-structure, or use an FSM to de�ne phase-dependent objectives
for an inverse dynamics optimization to be solved at each time step.
Policy search methods, e.g., stochastic local search or CMA [Hansen
2006], can be used to optimize the parameters of the given control
structures to achieve a richer variety of motions, e.g., [Coros et al.
2011; Yin et al. 2008], and e�cient muscle-driven locomotion [Wang
et al. 2009]. Policy search has been successfully applied directly
to time-indexed splines and neural networks in order to learn a
variety of bicycle stunts [Tan et al. 2014]. An alternative class of
approach is given by trajectory optimization methods, which can
compute solutions o�ine, e.g., [Al Borno et al. 2013], that can be
adapted for online model-predictive control [Hämäläinen et al. 2015;
Tassa et al. 2012], or that can compute optimized actions for the
current time-step using quadratic programming, e.g., [de Lasa et al.
2010; Macchietto et al. 2009]. Wu and Popović [2010] proposed a
hierarchical framework that incorporates a footstep planner and
model-predictive control for bipedal locomotion across irregular
terrain. To further improve motion quality and enrich the motion
repertoire, data-driven models incorporate motion capture examples
in constructing controllers, most often using a learned or model-
based trajectory tracking method [da Silva et al. 2008; Liu et al. 2016,
2012; Muico et al. 2009; Sok et al. 2007].

Reinforcement Learning for Simulated Locomotion: The neu-
roanimator work [Grzeszczuk et al. 1998] stands out as an early
demonstration of a form of direct policy gradient method using a
recurrent neural network, as applied to 3D swimming movements.
Recent years have seen a resurgence of e�ort towards tackling rein-
forcement learning problems for simulated agents with continuous
state and continuous action spaces. Many of the example problems
consist of agents in 2D and 3D physics-based simulations that learn
to swim, walk, and hop. Numerous methods have been applied to
tasks that include planar biped locomotion or planar swimming:
trajectory optimization [Levine and Abbeel 2014; Levine and Koltun
2014; Mordatch and Todorov 2014]; trust region policy optimization
(TRPO) [Schulman et al. 2015]; and actor-critic approaches [Lillicrap
et al. 2015; Mnih et al. 2016; Peng and van de Panne 2016].

Progress has recently been made on the harder problem of achiev-
ing 3D biped locomotion using learned model-free policies without
the use of a priori control structures. Tackling this problem de novo,
i.e., without any hints as to what walking looks like, is particularly
challenging. Recent work using generalized advantage estimation
together with TRPO [Schulman et al. 2016] demonstrates sustained
3D locomotion for a biped with ball feet. Another promising ap-
proach uses trajectory optimization methods to provide supervision

for a recurrent neural network to generate stepping movements
for 3D bipeds and quadrupeds [Mordatch et al. 2015], and with
the �nal motion coming from an optimization step rather than di-
rectly from a forward dynamics simulation. Hierarchical control
of 3D locomotion control has been recently proposed [Heess et al.
2016], and is perhaps the closest work to our own. Low-level, high-
frequency controllers are �rst learned during a pretraining phase, in
conjunction with a provisional high-level controller with access to
task-relevant information and that can communicate with the low-
level controller via a modulatory signal. Once pretraining has been
completed, the low-level controller structure is �xed and other high-
level controllers can then be trained. The 3D humanoid is trained
to navigate a slalom course, an impressive feat given the de novo
nature of the locomotion learning. In our work we demonstrate:(a)
signi�cantly more natural locomotion and the ability to walk with
multiple styles that can be interpolated; (b) locomotion that has
signi�cant (quanti�ed) robustness; (c) the learning of controllers
for four high-level tasks that use high-dimensional input, i.e., the
ability to see the surroundings using ego-centric terrain maps; and
(d) learning of a soccer-dribbling biped controller. In support of this,
we use: a bilinear phase transform for the low-level controllers; the
use of one or several reference motions; optional style reward terms;
and the use of a two-step foot plan that the high-level controller
can communicate to the low-level controller. We note that reference
motions have been previously utilized to guide the training of neu-
ral network policies for 3D bipedal locomotion [Levine and Koltun
2013].

Learning of high-level controllers for physics-based characters
has been successfully demonstrated for several locomotion and
obstacle-avoidance tasks [Coros et al. 2009; Peng et al. 2015, 2016].
Alternatively, planning using a learned high-level dynamics model
has also been proposed for locomotion tasks [Coros et al. 2008].
However, the low-level controllers for these learned policies are still
designed with signi�cant human insight, and the recent works of
Peng et al. are demonstrated only for planar motions.

Motion Planning: Motion planning is a well-studied problem,
which typically investigates how characters or robots should move
in constrained environments. For wheeled robots, such problem can
usually be reduced to �nding a path for a point robot [Kavraki et al.
1996]. Motion planning for legged robots is signi�cantly more chal-
lenging due to the increased degrees of freedom and tight coupling
with the underlying locomotion dynamics. When quadrupeds are
equipped with robust mobility control, a classic A∗ path planner
can be used to compute steering and forward speed commands to
the locomotion controller to navigate in real-world environment
with high success [Wooden et al. 2010]. However, skilled balanced
motions are more di�cult to achieve for bipeds and thus they are
harder to plan and control [Ku�ner et al. 2005]. Much of the work in
robotics emphasizes footstep planning, e.g., [Chestnutt et al. 2005],
with some work on full-body motion generation, e.g., [Grey et al.
2016]. Possibility graphs are proposed [Grey et al. 2016] to use high-
level approximations of constraint manifolds to rapidly explore the
possibility of actions, thereby allowing lower-level motion planners
to be utilized more e�ciently. Our hierarchical planning framework

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:3

Fig. 2. System Overview

and the step targets produced by the HLC are partly inspired by this
previous work from humanoid robotics.

Motion planning in support of character animation has been stud-
ied for manipulation tasks [Bai et al. 2012; Yamane et al. 2004] as well
as full-body behaviours. The full-body behaviour planners often
work with kinematic motion examples [Lau and Ku�ner 2005; Lee
and Lee 2004; PettrÃľ et al. 2003]. Planning for physics-based char-
acters is often achieved with the help of abstract dynamic models
in low-dimensional spaces [Mordatch et al. 2010; Ye and Liu 2010].
A hybrid approach is adopted in [Liu et al. 2012] where a high-level
kinematic planner directs the low-level dynamic control of speci�c
motion skills.

3 OVERVIEW
An overview of the DeepLoco system is shown in Figure 2. The
system is partitioned into two components that operate at di�erent
timescales. The high-level controller (HLC) operates at a coarse
timescale of 2 Hz, the timescale of walking steps, while the low-level
controller (LLC) operates at 30 Hz, the timescale of low-level control
actions such as PD target angles. Finally, the physics simulation
is performed at 3 kHz. Together, the HLC and LLC form a two-
level control hierarchy where the HLC processes the high-level
task goals дH and provides the LLC with low-level intermediate
goals дL that direct the character towards ful�lling the overall task
objectives. When provided with an intermediate goal from the HLC,
the LLC coordinates the motion of the character’s various joints in
order to ful�ll the intermediate goals. This hierarchical partitioning
of control allows the controllers to explore behaviours spanning
di�erent spatial and temporal abstractions, thereby enabling more
e�cient exploration of task-relevant strategies.

The inputs to the HLC consist of the state, sH , and the high-
level goal, дH , as speci�ed by the task. It outputs an action, aH ,
which then serves as the current goal дL for the LLC. sH provides
both proprioceptive information of the character’s con�guration
as well as exteroceptive information about its environment. In our
framework, the high level action, aH , consists of a footstep plan for
the LLC.

The LLC receives the state, sL , and an intermediate goal, дL , as
speci�ed by the HLC, and outputs an action aL . Unlike the high-level
state sH , sL consists mainly of proprioceptive information describing
the state of the character. The low-level action aL speci�es target
angles for PD controllers positioned at each joint, which in turn
compute torques that drive the motion of the character.

The actions from the LLC are applied to the simulation, which in
turn produces updated states sH and sL by extracting the relevant
features for the HLC and LLC respectively. The environment then
also provides separate reward signals rH and rL to the HLC and
LLC, re�ecting progress towards their respective goals дH and дL .
Both controllers are trained with a common actor-critic learning
algorithm. The policy (actor) is trained using a positive-temporal
di�erence update scheme modeled after CACLA [Van Hasselt 2012],
and the value function (critic) is trained using Bellman backups.

4 POLICY REPRESENTATION AND LEARNING
Let π (s,д) : S × G → A represent a deterministic policy, which
maps a state s ∈ S and goal д ∈ G to an action a ∈ A, while a
stochastic policy π (s,д,a) : S×G×A→ R represents the conditional
probability distribution of a given s and д, π (s,д,a) = p(a |s,д). For
a particular s and д, the action distribution is modeled by a Gaussian
π (s,д,a) = G(µ(s,д), Σ), with a parameterized mean µ(s,д) and �xed
covariance matrix Σ. Each policy query in turn samples an action
from the distribution according to

a = µ(s,д) +N, N ∼ G(0, Σ) (1)

generated by applying Gaussian noise to the mean action µ(s,д).
While the covariance Σ = diaд({σi }) is represented by manually-
speci�ed values {σi } for each action parameter, the mean is repre-
sented by a neural network µ(s,д |θ)with parameters θ . Large values
of {σi } can cause excessively noisy motions, which are prone to
falling, while small values can lead to slow learning. We found that
setting √σi to approximately 10% of the allowed range of values for
each joint to be e�ective in practice.

During training, a stochastic policy enables the character to ex-
plore new actions that may prove promising, but the addition of
exploration noise can impact performance at runtime. Therefore,
at runtime, a deterministic policy, which always selects the mean
action π (s,д) = µ(s,д), is used instead. The choice between a sto-
chastic and deterministic policy can be denoted by the addition of a
binary indicator variable λ ∈ {0, 1}

a = µ(s,д) + λN (2)

where 1 indicates a stochastic policy with added exploration noise,
and 0 a deterministic policy that always selects the mean action. Dur-
ing training, ϵ-greedy exploration can be incorporated by randomly
enabling and disabling exploration noise according to a Bernoulli
distribution λ ∼ Ber(ϵ), where ϵ represents the probability of action
exploration by applying noise to the mean action.

In reinforcement learning, the objective is often to learn an opti-
mal policy π∗ that maximizes the expected long term cumulative
reward J (π), expressed as the discounted sum of immediate rewards
rt ∈ R with discount factor γ ∈ [0, 1].

J (π) = Er0,r1, ...rT [r0 + γr1 + ... + γT rT |π] (3)

where T is a horizon that may be in�nite. The reward function
rt = r (st ,дt ,at) provides the agent with feedback regarding the
desirability of performing action at at state st given goal дt . The
reward function is therefore an interface through which users can
shape the behaviour of the agent by assigning higher rewards to

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

41:4 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

desirable behaviours, and lower rewards to less desirable ones. If
π is modeled as a parametric function with parameters θ , then the
expected cumulative reward can be re-expressed as J (θ), and the
goal of learning π∗ can be formulated as �nding the optimal set of
parameters θ∗

θ∗ = arg max
θ

J (θ) (4)

Policy gradient methods are a popular family of algorithms for
solving this class of problems [Sutton et al. 2000]. These methods
perform gradient ascent on the objective using empirical estimates
of the policy gradient Oθ J (θ), i.e. the gradient of J (θ) with respect
to the policy parameters θ . This class of methods lies at the heart of
our framework.

Algorithm 1 illustrates the common learning algorithm for both
the LLC and HLC. For the purpose of learning, the character’s expe-
riences are summarized by tuples τi = (si ,дi ,ai , ri , s ′i , λi), recording
the start state, goal, action, reward, next state, and application of
exploration noise for each action performed by the character. The
tuples are stored in an experience replay memory D and used to
update the policy. Each policy is trained using an actor-critic frame-
work, where a policy π (s,д,a |θµ) and value functionV (s,д |θv), with
parameters θµ and θv , are learned in tandem. The value function
is trained to predict the expected cumulative reward of following
the policy starting at a given state s and goal д. To update the value
function, a minibatch of n tuples {τi } are sampled from D and used
to perform a Bellman backup

yi ← ri + γV (s ′i ,дi |θv) (5)

θv ← θv + αv

(
1
n

∑
i
OθvV (si ,дi |θv)(yi −V (si ,дi |θv))

)
(6)

with αv being the critic stepsize. The learned value function is then
used to update the policy. Policy improvement is performed using
a CACLA-style positive temporal di�erence update [Van Hasselt
2012]. Since the policy gradient as de�ned above is for stochastic
policies, policy updates are performed using only tuples with added
exploration noise (i.e. λi = 1).

δi ← ri + γV (s ′i ,дi |θv) −V (si ,дi |θv) (7)

if δi > 0 :

θµ ← θµ + αµ

(
1
n
Oθµ µ(si ,дi |θµ)Σ

−1(ai − µ(si ,дi |θµ))
) (8)

where αµ is the actor stepsize. Equation 8 can be interpreted as
a stochastic gradient ascent step along an estimate of the policy
gradient for a Gaussian policy.

5 LOW-LEVEL CONTROLLER
The low-level controller LLC is responsible for coordinating joint
torques to mimic the overall style of a reference motion while satisfy-
ing footstep goals and maintaining balance. The reference motion is
represented by keyframes that specify target poses at each timestep
t . The LLC is queried at 30Hz , where each query provides as input the
state sL , representing the character state, and goal дL , representing
a footstep plan. The LLC then produces an action aL specifying PD
target angles for every joint, relative to their parent link.

ALGORITHM 1: Actor-Critic Algorithm Using Positive Temporal Di�er-
ence Updates

1: θµ ← random weights
2: θv ← random weights
3: while not done do
4: for step = 1, ...,m do
5: s ← start state
6: д ← goal
7: λ ← Ber(ϵt)
8: a ← µ(s, д |θµ) + λN, N ∼ G(0, Σ)
9: Apply a and simulate forward one step

10: s′ ← end state
11: r ← reward
12: τ ← (s, д, a, r, s′, λ)
13: store τ in D
14: end for

15: Update value function:
16: Sample minibatch of n tuples {τi = (si , дi , ai , ri , s′i , λi)} from D
17: for each τi do
18: yi ← ri + γV (s′i , дi |θv) −V (si , дi |θv)
19: end for
20: θv ← θv + αv

(1
n

∑
i OθvV (si , дi |θv)(yi −V (si , дi |θv))

)
21: Update policy:
22: Sample minibatch of n tuples {τj = (sj , дj , aj , r j , s′j , λj)} from D

where λj = 1
23: for each τj do
24: δj ← r j + γV (s′j , дj |θv) −V (sj , дj |θv)
25: if δj > 0 then
26: 4aj ← aj − µ(sj , дj |θµ)
27: θµ ← θµ + αµ

(
1
nOθµ µ(sj , дj |θµ)Σ−14aj

)
28: end if
29: end for
30: end while

LLC State: The LLC input state sL , shown in Figure 3 (left), consists
mainly of features describing the character’s con�guration. These

Fig. 3. le�: The character state features consist of the positions of each link
relative to the root (red arrows), their rotations, linear velocities (green
arrows), and angular velocities. right: The terrain features consist of a
2D heightmap of the terrain sampled on a regular grid. All heights are
expressed relative to height of the ground immediately under the root of
the character. The heightmap has a resolution of 32x32 and occupies an
area of approximately 11x11m.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:5

Fig. 4. The goal дL for the LLC is represented as a footstep plan, specifying
the target positions p̂0 and p̂1 for the next two steps, and the target heading
for the root θ̂root .

features include the center of mass positions of each link relative to
the character’s root, designated as the pelvis, their relative rotations
with respect to the root expressed as quaternions, and their linear
and angular velocities. Two binary indicator features are included,
corresponding to the character’s feet. The features are assigned
1 when their respective foot is in contact with the ground and 0
otherwise. A phase variable ϕ ∈ [0, 1] is also included as an input,
which indicates the phase along the gait cycle. Each gait cycle has
a �xed period of 1 s , corresponding to 0.5 s per step. The phase
variable advances at a �xed rate and helps keep the LLC in sync
with the reference motion. For the reference motions, the phase is
linearly interpolated between foot contact times. Combined, the
state features create a 110D state space.

LLC Goal: Each footstep plan дL = (p̂0, p̂1, θ̂root), as shown in Fig-
ure 4, speci�es the 2D target position p̂0 relative to the character
on the horizontal plane for the swing foot at the end of the next
step, as well as the target location for the following step p̂1. This
is motivated by work showing that "two steps is enough" [Zaytsev
et al. 2015]. In addition to target step positions, the footstep plan
also provides a desired heading θ̂root for the root of the character
for the immediate next step.

LLC Action: The action aL produced by the LLC speci�es target
positions for PD controllers positioned at each joint. The target joint
positions are represented in 4 dimensional axis-angle form, with
axis normalization occurring when applying the actions, i.e., the
output action from the network need not be normalized. Each action
parameter is clamped to stay within permissible values depending
on the range of motion of each joint. This yields a 22D action space.

5.1 Reference Motion
A reference motion (or set of motions) serves to help specify the
desired walking style, while also helping to guide the learning. The
reference motion can be a single manually keyframed motion cycle,
or one or more motion capture clips. The goal for the LLC is to
mimic the overall style of the reference motion rather than pre-
cisely tracking it. The reference motion will generally not satisfy
the desired footstep goals, and is often not physically realizable in
any case because of the approximate nature of a hand-animated
gait cycle, or model mismatches in the case of a motion capture
clip. At each timestep t a reference motion provides a reference
pose q̂(t) and reference velocity Û̂q(t), computed via �nite-di�erences
Û̂q(t) ≈ q̂(t+4t)−q̂(t)

4t . The use of multiple reference motion clips can

help produce better turning behaviors, as best seen in the sup-
plemental video. To make use of multiple reference motions, we
construct a kinematic controller q̂∗(·) ← K(s,дL), when given the
simulated character state s and a footstep plan дL , selects the ap-
propriate motion from a small set of motion clips that best realizes
the footstep plan дL . To construct the set of reference motions for
the kinematic controller, we segmented 7 s of motion capture data
of walking and turning motions, into individual clips q̂j (·), each
corresponding to a single step. A step begins on the stance foot
heel-strike and ends on the swing foot heel-strike. Each clip is pre-
processed to be in right stance, and linear time-warping is applied
to normalize the step duration to 0.5 s . During training, the refer-
ence motions are mirrored as necessary to be consistent with the
simulated character’s stance leg. To help synchronize the reference
motion with the simulated character, we de�ne the phase ϕ of a
motion as a linear function with 0 at the start of a step and 1 at
the end. A vector of featuresψ (q̂j (·)) = (pstance ,pswinд ,θroot) are
then extracted for each clip and later used to select the appropriate
clip for a given query. The features include the stance foot posi-
tion pstance at the start of a clip, the swing foot position pswinд
at the end of the clip, and the root orientation θroot on the hori-
zontal plane at the end of the clip. All features are expressed with
respect to the character’s local coordinate frame at the start of each
clip, with the origin beneath the character’s root and the x-axis
aligned along the root’s heading direction. The mocap clips were
collected from http://animation.comp.nus.edu.sg/nusmocap.html.
Besides segmenting and retargetting the clips for our character, no
additional processing was performed.

During training, K(s,дL) is queried at the beginning of each step
to select the reference clip for the upcoming step. To select among
the motion clips, a similar set of featuresψ (s,дL) are extracted from
s and дL , where pstance is speci�ed by the stance foot position from
the simulated character state s , pswinд and θroot are speci�ed by
the target footstep position p̂0 and root orientation θ̂root from дL .
The most suitable clip is then selected according to:

K(s,дL) = arg min
q̂ j (·)

| |ψ (s,дL) −ψ (q̂j (·))| | (9)

The selected clip then acts as the reference motion to shape the
reward function for the LLC over the course of the upcoming step.

5.2 LLC Reward
Given the reference pose q̂(t) and velocity Û̂q(t) the LLC reward
rL is de�ned as a weighted sum of objectives that encourage the
character to imitate the style of the reference motion while following
the footstep plan,

rL = wposerpose +wvel rvel +wroot rroot

+wcomrcom +wendrend +wheadinдrheadinд
(10)

using (wpose ,wvel ,wroot ,wcom ,wend ,wheadinд) =
(0.5, 0.05, 0.1, 0.1, 0.2, 0.1). rpose , rvel , rroot , and rcom encourages
the policy to reproduce the given reference motion, while rend and
rheadinд encourages it to follow the footstep plan.

rpose = exp

(
−

∑
i
wid(q̂i (t),qi)2

)
(11)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

41:6 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

Fig. 5. Schematic illustration of the LLC network. The input consists of the
state sL and goal дL . The first layer applies the bilinear phase transform
and the resulting features are processed by a series of fully-connected layers.
The output layer produces the action aL , which specifies PD targets for
each joint.

where qi represents the quaternion rotation of joint i and d(·, ·)
computes the distance between two quaternions. wi are manually
speci�ed weights for each joint. Details for the other reward terms
are available in the supplemental material. We choose to keep re-
wards constrained to r ∈ [0, 1].

5.3 Bilinear Phase Transform
While the phase variable ϕ helps to keep the LLC in sync with
the reference motion, in our experiments this did not appear to be
su�cient for the network to clearly distinguish the di�erent phases
of a walk, often resulting in foot-dragging artifacts. To help the
network better distinguish between di�erent phases of a motion,
we take inspiration from bilinear pooling models for vision tasks
[Fukui et al. 2016]. From the scalar phase variable ϕ we construct
a tile-coding Φ = (Φ0,Φ1,Φ2,Φ3)T , where Φi ∈ {0, 1} is 1 if ϕ lies
within its phase interval and 0 otherwise. For example, Φ0 = 1 i�
0 ≤ ϕ < 0.25, and Φ1 = 1 i� 0.25 ≤ ϕ < 0.5, etc. Given the original
input vector (sL ,дL), the bilinear phase transform computes the
outer product(

sL
дL

)
ΦT =

[
Φ0

(
sL
дL

)
,Φ1

(
sL
дL

)
,Φ2

(
sL
дL

)
,Φ2

(
sL
дL

)]
(12)

which is then processed by successive layers of the network. This
representation results in a feature set where only a sparse subset of
the features, corresponding to the current phase interval, are active
at a given time. This e�ectively encodes a prior into the network
that di�erent behaviours are expected at di�erent phases of the
motion. Note that the scalar phase variable ϕ is still included in sL
to allow the LLC to track its progress within each phase interval.

5.4 LLC Network
A schematic diagram of the LLC network is shown in Figure 5. The
LLC is represented by a 4-layered neural network that receives
as input sL and дL , and outputs the mean µ(sL ,дL) of the action
distribution. The �rst layer applies the bilinear phase transform to
the inputs, and the resulting bilinear features are then processed

Fig. 6. Schematic illustration of the HLC network. The input consists of a
terrain map T , character features C , and goal дH . The output action aH
specifies a footstep plan дL for the LLC.

by two fully-connected layers with 512 and 256 units each. ReLU
activation functions are applied to both hidden layers [Nair and
Hinton 2010]. Finally a linear output layer computes the mean action.
The LLC value function VL(sL ,дL) is modeled by a similar network,
but with a single linear unit in the output layer. Each LLC network
has approximately 500k parameters.

5.5 LLC Training
LLC training proceeds episodically where the character is initialized
to a default pose at the beginning of each episode. An episode
is simulated for a maximum of 200 s but is terminated early if
the character falls, leaving the character with 0 reward for the
remainder of the episode. A fall is detected when the torso of the
character makes contact with the ground. At the beginning of each
walking step, a new footstep plan дkL = (p̂

k
0 , p̂

k
1 , θ̂

k
root) is generated

by randomly adjusting the previous plan дk−1L according to

p̂k0 = p̂
k−1
1

θ̂kroot = θ̂
k−1
root+N, N ∼ G(0, 0.252)

p̂k1 = p̂
k
0 + 4p(θ̂

k
root)

(13)

where 4p(θ̂kroot) advances the step position along the heading di-
rection θ̂kroot by a �xed step length of 0.4m to obtain a new target
step position.

After a footstep plan has been determined for the new step, the
kinematic controller K(sL ,дL) is queried for a new reference motion.
The reference motion q̂(·) is then used by the reward function for
the duration of the step, which guides the LLC towards a stepping
motion that approximately achieves the desired footstep goal дL .

5.6 Style Modification
In addition to imitating a reference motion, the LLC can also be
stylized by simple modi�cations to the reward function. In the
following examples, we consider the addition of a style term cstyle
to the pose reward rpose .

rpose = exp

(
−

∑
i
wid(q̂i (t),qi)2 −wstylecstyle

)
(14)

where cstyle provides an interface through which the user can shape
the motion of the LLC. wstyle is a user-speci�ed weight that trades
o� between conforming to the reference motion and satisfying the
desired style.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:7

Forward/Sideways Lean:By using cstyle to specify a desired waist
orientation, the LLC can be steered towards learning a robust walk
while leaning forward or sideways.

cstyle = d(q̂(t)waist ,qwaist)2 (15)

where q̂(·)waist is a quaternion specifying the desired waist orien-
tation.

Straight Leg(s): Similarly, cstyle can be used to penalize bending
of the knees, resulting in a locked-knee walk.

cstyle = d(qI ,qknee)2 (16)

with qI being the identity quaternion. Using this style term, we
trained two LLC’s, one with the right leg encouraged to be straight,
and one with both legs straight.

High-Knees: A high-knees walk can be created by using cstyle to
encourage the character to lift its knees higher during each step,

cstyle = (ĥknee − hknee)2 (17)

where ĥknee = 0.8m is the target height for the swing knee with
respect to the ground.

In-placeWalk: By replacing the reference motion q̂(·)with a single
hand-authored clip of an in-place walk, the LLC can be trained to
step in-place.

Separate networks are trained for each stylized LLC by bootstrap-
ping from the nominal walk LLC. The weights of each network are
initialized from those of the nominal walk, then �ne-tuned using the
stylized reward functions. Furthermore, we show that it is possible
to interpolate di�erent stylized LLC’s while also remaining robust.
Let πaL (sL ,дL) and πbL (sL ,дL) represent LLC’s trained for style a and
b. A new LLC πcL(s,д) can be de�ned by linearly interpolating the
outputs of the two LLC’s

πcL(sL ,дL) = (1 − u)π
a
L (sL ,дL) + uπ

b
L (sL ,дL) (18)

with u ∈ [0, 1], allowing the character to seamlessly transition
between the di�erent styles. As shown in the results, we can also
allow for moderate extrapolation.

6 HIGH-LEVEL CONTROLLER
While the LLC is primarily responsible for low-level coordination
of the character’s limbs for locomotion, the HLC is responsible for
high-level task-speci�c objectives such as navigation. The HLC is
queried at 2 Hz, corresponding to the beginning of each step. Every
query provides as input a state sH and a task-speci�c goal дH . The
HLC output action aH speci�es a footstep plan дL for the LLC. The
role of the HLC is therefore to provide intermediate goals for the
LLC in order to achieve the overall task objectives.

HLC State: Unlike sL , which provides mainly proprioceptive infor-
mation describing the con�guration of the character, sH includes
both proprioceptive and exteroceptive information describing the
character and its environment. Each state sH = (C,T), consists of a
set of character featuresC and terrain featuresT , shown in Figure 3
(right). C shares many of the same features as the LLC state sL , but

excludes the phase and contact features.T is represented by a 32×32
heightmap of the terrain around the character. The heightmap is
sampled on a regular grid with an area of approximately 11 × 11m.
The samples extend 10m in front of the character and 1 m behind.
Example terrain maps are shown in Figure 7. The combined features
result in a 1129D state space.

6.1 HLC Training
As with the LLC training, the character is initialized to a default pose
at the start of each episode. Each episode terminates after 200 s or
when the character falls. At the start of each step, the HLC is queried
to sample an action aH from the policy, which is then applied to the
LLC as a footstep goal дL . The LLC is executed for 0.5 s , the duration
of one step, and an experience tuple τ is recorded for the step. Note
that the weights for the LLC are frozen and only the HLC is being
trained. Therefore, once trained, the same LLC can be applied to
a variety of tasks by training task-speci�c HLC’s that specify the
appropriate intermediate footstep goals.

6.2 HLC Network
A schematic diagram of the HLC network is available in Figure
6. The HLC is modeled by a deep convolutional neural network
that receives as input the state H = (C,T) and task-speci�c goal
дH , and the output action aH = дL speci�es a footstep plan for
the LLC for a single step. The terrain map T is �rst processed by a
series of three convolutional layers, with 16 5 × 5 �lters, 32 4 × 4
�lters, and 32 3 × 3 �lters respectively. The features maps from the
�nal convolutional layer are processed by 128 fully-connected units.
The resulting feature vector is concatenated with C and дH , and
processed by two additional fully-connected layers with 512 and 256
units. ReLUs are used for all hidden layers. The linear output layer
produces the �nal action. Each HLC network has approximately 2.5
million parameters.

6.3 HLC Tasks
Path Following: In this task an HLC is trained to navigate narrow
paths carved into rocky terrain. A random path of uniform height
is embedded into terrain generated using Perlin Noise [Perlin 2002].
The path width varies between 1 m and 2 m. A target location
is placed randomly along the path, and advances along the path
when the character is within 1 m of the target. The HLC goal дH =
(θtar ,dtar) is represented by the direction to the target θtar relative
to the character’s facing direction, and the distance dtar to the

Fig. 7. 32 × 32 height maps are included as input features to the HLC. Each
map covers a 11 × 11m area. Values in the images are normalized by the
minimum and maximum height within each map. le�: path; middle: pillar
obstacles; right: block obstacles.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

41:8 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

target on the horizontal plane. Since the policy is not provided with
an explicit parameterization of the path as input, it must learn to
recognize the path from the terrain map T and plan its footsteps
accordingly.

The reward for this task is designed to encourage the character
to move towards the target at a desired speed.

rH = exp
(
−

(
min(0,uTtarvcom − v̂com)

)2)
(19)

where vcom is the agent’s centre of mass velocity on the horizontal
plane, and utar is a unit vector on the horizontal plane pointing
towards the target. v̂com = 1 m/s speci�es the desired speed at
which the character should move towards the target. The reward
was designed to only penalize slower than desired motions, but can
be easily modi�ed to also penalize faster than desired motions.

Soccer Dribbling: Dribbling is a challenging task requiring both
high-level and low-level planning. The objective is to move a ball
to a target location, where the initial ball and target locations are
randomly set at the beginning of each episode. The ball has a radius
of 0.2m and a mass of 0.1 kд. Having to learn a proper sequence of
sub-tasks in the correct order makes this task particularly challeng-
ing. The agent must �rst move to the ball, and once it has possession
of the ball, dribble the ball towards the target. When the ball has
arrived at the target, the agent must then learn to stop moving
the ball to avoid kicking the ball past the target. Since the policy
does not have direct control over the ball, it must rely on com-
plex contact dynamics in order to manipulate the ball. Furthermore,
considering the LLC was not trained with motion data compara-
ble to dribbling, the HLC has to learn to provide the appropriate
footstep plans in order to elicit the necessary LLC behaviour. The
goal дH = (θtar ,dtar ,θball ,dball ,hball ,vball ,ωball) consists of
the target direction relative to the ball θtar , distance between the
target and ball dtar , ball direction relative to the agent’s root θball ,
distance between the ball and the agent dball , height of the ball’s
center of mass from the groundhball , the ball’s linear velocityvball ,
and angular velocity ωball . Because the dribbling task occurs on a
�at plane, the terrain map T is excluded from the HLC inputs, and
the convolutional layers are removed from the network.

The reward for the soccer task consists of a weighted sum of
terms which encourages the agent to move towards the ball rcv ,
stay close to the ball rcp , move the ball towards the target rbv , and
keep the ball close to the target rbp .

rH = wcvrcv +wcprcp +wbvrbv +wbprbp (20)

with weights (wcv ,wcp ,wbv ,wbp) = (0.17, 0.17, 0.33, 0.33). Details
for each term are available in the supplementary material.

Pillar Obstacles: A more common task is to traverse a reasonably
dense area of static obstacles. Similar to the path following task, the
objective is to reach a randomly placed target location. However,
unlike the path following task, there exists many possible paths to
reach the target. The HLC is therefore responsible for planning and
steering the agent along a particular path. When the agent reaches
the target, the target location is randomly changed. The base of
each obstacle measures 0.75 × 0.75m, with height varying between

Fig. 8. le�: Learning curve for the LLC. The network is randomly initialized
and trained to mimic a nominal walk while following randomly generated
footstep plans. right: learning curves for policies trained with 10 mocap
clips, 1 hand-authored clip, and no motion clips.

2m and 8m. Each environment instance is generated by randomly
placing obstacles at the start of each episode. The goal дH and re-
ward function are the same as those used for the path following task.

Block Obstacles: This environment is a variant of the pillar obsta-
cles environment, where the obstacles consist of large blocks with
side lengths varying between 0.5m and 7m. The policy therefore
must learn to navigate around large obstacles to �nd paths leading
to the target location.

Dynamic Obstacles: In this task, the objective is to navigate across
a dynamically changing environment in order to reach a target loca-
tion. The environment is populated with obstacles moving at �xed
velocities back and forth along randomly oriented linear paths. The
velocities vary from 0.2m/s to 1.3m/s , with the agent’s maximum
velocity being approximately 1m/s . Given the presence of dynamic
obstacles, rather than using a height�eld as input, the policy is pro-
vided with a velocity-map. The environment is sampled for moving
obstacles where each sample records the 2D velocity along the hori-
zontal plane if a sample overlaps with an obstacle. If a sample point
does not contain an obstacle, then the velocity is recorded as 0. The
goal features and reward function are identical to those used in the
path following task. This example should not be confused with a
multiagent simulation because the moving obstacles themselves are
not reactive.

7 RESULTS
The motions from the policies are best seen in the supplemental
videos. We learn locomotion skills for a 3D biped, as modeled by
eight links: three links for each leg and two links for the torso. The
biped is 1.6m tall and has a mass of 42 kд. The knee joints have one
degree of freedom (DOF) and all other joints are spherical, i.e., three
DOFs. We use a ground friction of µ = 0.9. The character’s motion
is driven by internal joint torques from stable PD controllers [Tan
et al. 2011] and simulated using the Bullet physics engine [Bullet
2015] at 3000 Hz. The kp gains for the PD controllers are (1000,
300, 300, 100) Nm/rad for the (waist, hip, knee, ankle), respectively.
Derivative gains are speci�ed as kd = 0.1kp . Torque limits are (200,
200, 150, 90) Nm, respectively. Joint limits are also in e�ect for all
joints. All neural networks are built and trained with Ca�e [Jia
et al. 2014]. The values of the input states and output actions of

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:9

LLC Forward Side Incline Decline
Nominal Walk 200N 210N 16%(9.1◦) 11%(6.3◦)
High-Knees 140N 190N 9%(5.1◦) 5%(2.9◦)
Straight Leg 150N 180N 12%(6.8◦) 6%(3.4◦)
Straight Legs 90N 130N 9%(5.1◦) 5%(2.9◦)
Forward Lean 180N 290N 10%(5.7◦) 16%(9.1◦)
Sideways Lean 160N 220N 7%(4.0◦) 16%(9.1◦)

Table 1. Maximum forwards and sideways push, and steepest incline and
decline each LLC can tolerate before falling. Each push is applied for 0.25 s .

the networks are normalized to range approximately between [-1,
1] using manually-speci�ed o�sets and scales. The output of the
value network is normalized to be between [0, 1] by multiplying
the cumulative reward by (1 − γ). This normalization helps to en-
sure reasonable gradient magnitudes during backpropagation. Once
trained, all results run faster than real-time.

LLC referencemotions: We train controllers using a single planar
keyframed motion cycle as a motion style to imitate, as well as a set
of ten motion capture steps that correspond to approximately 7 s
of data from a single human subject. The clips consist of walking
motions with di�erent turning rates. The character was designed
to have similar measurements to those of the human subject. By
default, we use the results based on the motion capture styles, as
they allow for sharper turns and produce a moderate improvement
in motion quality. Please see the supplementary video for a direct
comparison.

Hyperparameter settings: Both LLC and HLC training share sim-
ilar hyperparameter settings. Batches ofm = 32 are collected before
every update. The experience replay memory D records the 50k
most recent tuples. Updates are performed by sampling minibatches
of n = 32 tuples from D and applying stochastic gradient descent
with momentum, with value function stepsize αV = 0.01, policy
stepsize αµ = 0.001, and momentum 0.9. L2 weight decay of 0.0005
is applied to the policy, but none is applied to the value function.
Both the LLC and HLC use a discount factor of γ = 0.95. For the
LLC, the ϵ-greedy exploration rate ϵt is initialized to 1 and linearly
annealed to 0.2 over 1 million iterations. For the HLC, ϵt is ini-
tialized to 1 and annealed to 0.5 over 200k iterations. The LLC is
trained for approximately 6 million iterations, requiring about 2
days of compute time on a 16-core cluster using a multithreaded C++
implementation. Each HLC is trained for approximately 1 million
iterations, requiring about 7 days. All computations are performed
on the CPU and no GPU-acceleration was leveraged.

7.1 LLC Performance
Figure 8 illustrates an LLC learning curve. Performance of inter-
mediate policies are evaluated every 40k iterations by applying the
policies for 32 episodes with a length of 20 s each. Performance is
measured using the normalized cumulative reward (NCR), which
is calculated as the sum of immediate rewards over an episode
normalized by the minimum and maximum possible cumulative
reward. No discounting is applied when calculating the NCR. A

Fig. 9. PD target angles for the swing and stance hip as a function of
character state. top: character’s waist is leaning forward at various angles,
with positive theta indicates a backward lean. bo�om: the root is given a
push at di�erent velocities.

comparison between LLC’s trained using 10 mocap clips, 1 hand-
authored forward walking motion, and no reference motions, is
also available in Figure 8. Since the LLC’s use di�erent reference
motions, the NCR is measured using only the footstep terms r =
wendrend +wheadinдrheadinд . A richer repertoire of reference mo-
tions leads to noticeable improvements in learning speed and �nal
performance. Without a reference motion, the LLC fails to learn a
successful walk. Learning curves for the stylized LLC’s are available
in the supplemental material.

LLC Robustness: LLC’s trained for di�erent styles are evaluated
for robustness by measuring the maximum perturbation force that
each LLC can tolerate before falling. The character is �rst directed to
walk forward, then a push is applied to the torso mid-point. Forward
and sideways pushes were tested separately where each perturbation
is applied for 0.25 s . The magnitude of the forces are increased in
increments of 10 N until the character falls. We also evaluated the
LLC’s robustness to terrain variation by measuring the steepest
incline and decline that each LLC can successfully travel across
without falling for 20 s . The maximum force that each LLC is able to
recover from, and the steepest incline and decline are summarized
in Table 1. The nominal walk proves fairly robust to the di�erent

Task Reward (NCR)
Path Following 0.55
Soccer Dribbling 0.77
Pillar Obstacles 0.56
Block Obstacles 0.70
Dynamic Obstacles 0.18

Table 2. Performance summary of HLC’s trained for each task. The NCR is
calculated using the average of 256 episodes.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

41:10 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

Fig. 10. HLC learning curves. Additional learning curves are available in the
supplemental material.

Fig. 11. Learning curves with and without control hierarchy.

perturbations, while the straight leg walks are generally less robust
than the other styles. Though the LLC’s were trained exclusive on
�at terrain, the nominal LLC is able to walk up 16% inclines without
falling. After normalizing for character weight and size di�erences,
the robustness of the nominal walk LLC is comparable to �gures
reported for SIMBICON, which leverages manually-crafted balance
strategies [Yin et al. 2007]. The LLC’s robustness likely stems from
the application of exploration noise during training. The added noise
perturbs the character away from its nominal trajectory, requiring
it to learn recovery strategies for unexpected perturbations. We
believe that robustness could be further improved by presenting the
character with examples of di�erent pushes and terrain variations
during training, and by letting it anticipate pushes and upcoming
terrain. We also test for robustness with respect to changes in the
gait period, i.e., forcing the controller to walk with shorter or longer
duration steps. The gaits are generally robust to changes in gait
period of ±20%.

To better understand the feedback strategies developed by the
networks we analyze the action outputs from the nominal walk
LLC for di�erent character state con�gurations. Figure 9 illustrates
the swing and stance hip target angles as a function of character’s
state. The state variations we consider include the waist leaning
forward and backward at di�erent angles, and pushing the root at
di�erent velocities. The LLC exhibits intuitive feedback strategies
reminiscent of SIMBICON [Yin et al. 2007]. When the character is
leaning too far forward or its forward velocity is too high, then the
swing hip is raised higher to help position the swing foot further
in front to regain balance in the following step, and vice-versa. but
unlike SIMBICON, whose linear balance strategies are manually-
crafted, the LLC develops nonlinear strategies without explicit user
intervention.

Fig. 12. Snapshots of HLC tasks. The red marker represents the target
location and the blue line traces the trajectory of the character’s center
of mass. top-to-bo�om: soccer dribbling, path following, pillar obstacles,
block obstacles, dynamic obstacles.

7.2 HLC Performance
Learning curves for HLC’s trained for di�erent tasks are available
in Figure 10. Intermediate policy performance is evaluated every
5k iterations using 32 episodes with a length of 200 s each. Note
that the maximum normalized cumulative reward, NCR = 1, may
not always be attainable. For soccer dribbling, the maximum NCR
would require instantly moving the ball to the target location. For

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:11

the navigation tasks, the maximum NCR would require a straight
and unobstructed path between the character and target location.

For soccer dribbling, the HLC learns to correctly sequence the
required sub-tasks. The HLC �rst directs the character towards the
ball. It then dribbles the ball towards the target. Once the ball is
su�ciently close to the target, the HLC developed a strategy of
circling around the ball, while maintaining some distance, to avoid
perturbing the ball away from the target or tripping over the ball.
Alternatively, the ball can be replaced with a box, and the HLC
is able to generalize to the di�erent dynamics without additional
training. The HLC’s for the path following, pillar obstacles, and block
obstacles tasks all learned to identify and avoid obstacles using
heightmaps and navigate across di�erent environments seeking
randomly placed targets. For the path following task, the reward
does not explicitly penalize the character for straying o� the path,
but the policy learns that falls are less likely when staying on the
path. Therefore the path following behaviour emerges from the
learning process. The more di�cult dynamic obstacles environment,
proved challenging for the HLC, reaching a competent level of
performance, but still prone to occasional missteps, particularly
when navigating around faster moving obstacles. We note that the
default LLC training consists of constant speed forward walks and
turns but no stopping, which limits the options available to the HLC
when avoiding obstacles.

Figure 11 compares the learning curves with and without the
control hierarchy for soccer dribbling and path following. To train
the policies without the control hierarchy, the LLC’s inputs are
augmented with дH and for the path following task, the terrain
mapT is also included as part of the input. Convolutional layers are
added to the path following LLC. The augmented LLC’s are then
trained to imitate the reference motions and perform the high-level
tasks. Without the hierarchical decomposition, both LLC’s failed to
perform their respective tasks.

7.3 Transfer Learning
Another advantage of a hierarchical structure is that it enables a de-
gree of interchangeability between the di�erent components. While
a common LLC can be used by the various task-speci�c HLC’s, a
common HLC can also be applied to multiple LLC’s without addi-
tional training. This form of zero-shot transfer allows the character
to swap between di�erent LLC’s while retaining a reasonable level
of aptitude for a task. Furthermore, the HLC can then be �ne-tuned
to improve performance with a new LLC, greatly decreasing the
training time required when compared to retraining from scratch. In
Figure 13 the performance when using di�erent LLC’s is shown for
soccer dribbling before and after HLC �ne-tuning, and retraining
from scratch. Learning curves are available in Figure 14. Fine-tuning
is applied for 200k iterations using the HLC trained for the nominal
LLC for initialization. Retraining is performed for 1 million itera-
tions from random initialization. For soccer dribbling, the ability
to substitute di�erent LLC’s is style dependent, with the forward
lean exhibiting the least degradation and high-knees exhibiting the
most.

Fig. 13. Performance using di�erent LLC’s for soccer dribbling with and
without HLC fine-tuning, and retraining.

Fig. 14. Learning curves for fine-tuning HLC’s trained for the nominal LLC
to di�erent LLC’s, and retraining HLC’s from scratch.

8 DISCUSSION
The method described in this paper allows for skills to be designed
while making few assumptions about the controller structure or
explicit knowledge of the underlying dynamics. Skill development
is guided by the use of objective functions for low-level and high-
level policies. Taken together, the hierarchical controller allows for
combined planning and physics-based movement based on high-
dimensional inputs. Overall, the method further opens the door to
learning-based approaches that allow for rapid and �exible develop-
ment of movement skills, at multiple levels of abstraction. The same
deep RL method is used at both timescales, albeit with di�erent
states, actions, and rewards. Taken as a whole, the method allows
for learning skills that directly exploit a variety of information, such
as the terrain maps for navigation-based tasks, as well as skills that
require �ner-scale local interaction with the environment, such as
soccer dribbling.

Imitation objective: The LLC learns in part on a motion imitation
objective, utilizing a reference motion that provides a sketch of the
expected motion. This can be as simple as a single keyframed planar
walk cycle that helps guide the control policy towards a reason-
able, readily-available movement pattern, as opposed to learning it
completely from scratch. Importantly, it further a means of direct-
ing the desired motion style, given the lack of detailed biological
modeling that would otherwise likely be needed to achieve natural
motions purely as the product of optimization. While a single crude
keyframed planar walk cycle can produce good LLC policies that

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

41:12 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

also learn to turn, the use of multiple motion capture clips enables
sharper and more natural turns. Once a basic control policy is in
place, the policy can be further adapted using new goals or objective
functions, as demonstrated in our multiple LLC style variations.

Phase information: Our LLC’s currently still use phase informa-
tion as part of the character state, which can be seen as a basic
memory element, i.e., “where am I in the gait cycle.” We still do not
fully understand why a bilinear phase representation works better
for LLC learning, in terms of achieving a given motion quality, than
the alternative of using continuously-valued phase representation,
i.e., cos(ϕ), sin(ϕ). In future work, we expect that the phase could be
stored and updated using an internal memory element in a recurrent
network or LSTM. This would also allow for phase adaptations, such
as stopping or reversing the phase advancement when receiving a
strong backwards push.

HLC-LLC interface and integration: Currently, the representa-
tion used as the interface between the HLC and LLC, aH ≡ дL ,
is manually speci�ed, in our case corresponding to the next two
footstep locations and the body orientation at the �rst footstep. The
HLC treats these as abstract handles for guiding the LLC, and thus
may exploit regions of this domain for which the LLC has never
been trained. This is evident in the HLC behaviour visualizations,
which show that unattainable footsteps are regularly demanded of
the LLC by the HLC. This is not problematic in practice because
the HLC will learn to avoid regions of the action space that lead
to problematic behaviors from the LLC, such as falling. Learning a
suitable representation for the interface between the HLC and LLC,
as demonstrated in part by [Heess et al. 2016], is an exciting avenue
for future work. It may be possible to �nd representations which
then allow for LLC substitutions with less performance degradation.
An advantage of the current explicitly-de�ned LLC goals, дL , is
that it can serve to de�ne the reward to be used for LLC training.
However, it does result in the LLC’s and HLC’s being trained using
di�erent reward functions, whereas a more conceptually pure ap-
proach might simply use a single objective function.

Motion planning: Some tasks, such as path navigation, could also
be accomplished using existing motion planning techniques based
on geometric constraints and geometric objectives. However, de-
veloping e�cient planning algorithms for tasks involving dynamic
worlds, such as the dynamic obstacles task or the soccer dribbling
task, is much less obvious. In the future, we also wish to develop
skills that are capable of automatically selecting e�cient and feasi-
ble locomotion paths through challenging 3D terrains.

Transfer and parameterization: Locomotion can be seen as en-
compassing a parameterized family of related movements and skills.
Knowing one style of low-level motion should help in learning an-
other style, and, similarly, knowing the high-level control for one
task, e.g., avoiding static obstacles, should help in learning another
related task, e.g., avoiding dynamic obstacles. This paper has demon-
strated several aspects of transfer and parameterization. The ability
to interpolate (and to do moderate extrapolation) between di�erent
LLC motion styles provides a rich and conveniently parameterized

space of motions. The LLC motions are robust to moderate terrain
variations, external forces, and changes in gait period, by virtue of
the exploration noise they experience during the learning process.
As demonstrated, the HLC-LLC hierarchy also allows for substitu-
tion of HLC’s and LLC’s. However, for HLC/ LLC pairs that have
never been trained together, the performance will be degraded for
tasks that are sensitive to the dynamics, such as soccer dribbling.
However, the HLC’s can be e�ciently readapted to improve perfor-
mance with additional �ne-tuning.

Learning e�ciency: The sample e�ciency of the training process
can likely be greatly improved. Interleaving improvements to a
learned dynamics model with policy improvements is one possible
approach. While we currently use a positive-temporal di�erence
advantage function in our actor-critic framework, we intend to more
fully investigate other alternatives in future work.

End-to-end training:While the HLC and LLC are currently trained
separately, we have experimented with training all levels of the hier-
archy simultaneously. However, this led to a number of challenges.
In particularly, the dynamics observed by the HLC is determined
by the behaviour of the LLC. When both are trained jointly, the
changing LLC dynamics also impacts the HLC and impairs its ability
to learn. Exploring methods for end-to-end training of hierarchical
policies is an exciting direction for future work.

9 CONCLUSIONS
We have presented a hierarchical learning-based framework for 3D
bipedal walking skills that makes limited use of prior structure. It
allows for easily-directable control over the motion style and is
shown to produce highly robust controllers. The controllers can
directly exploit terrain maps and high-dimensional state descriptors
for the character. The hierarchical decomposition allows for both
high-level and low-level controllers to be reused.

There are many exciting directions to explore. We wish to explore
how further agility can be achieved, for walking and running. We
would like to explore how to best learn to walk and run directly
over 3D terrains, whereas our current control tasks navigate on �at
paths through 3D terrains. It will be important in the future to �nd
ways of learning additional LLC skills that are directly in support
of a given HLC task. An interesting direction would be to learn
adversarial and cooperative behaviors between multiple characters,
such as for playing tag or for collision avoidance when crossing
paths. In the future, we also hope to be able to directly learn to drive
muscle-actuated 3D models.

REFERENCES
Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. 2013. Trajectory Optimization

for Full-Body Movements with Complex Contacts. TVCG 19, 8 (2013), 1405–1414.
Yunfei Bai, Kristin Siu, and C Karen Liu. 2012. Synthesis of concurrent object manipu-

lation tasks. ACM Transactions on Graphics (TOG) 31, 6 (2012), 156.
Bullet. 2015. Bullet Physics Library. (2015). http://bulletphysics.org.
Joel Chestnutt, Manfred Lau, German Cheung, James Ku�ner, Jessica Hodgins, and

Takeo Kanade. 2005. Footstep Planning for the Honda ASIMO Humanoid. In ICRA05.
629–634.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Robust task-based
control policies for physics-based characters. ACM Transctions on Graphics 28, 5
(2009), Article 170.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:13

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized Biped
Walking Control. ACM Transctions on Graphics 29, 4 (2010), Article 130.

Stelian Coros, Philippe Beaudoin, Kang Kang Yin, and Michiel van de Panne. 2008.
Synthesis of constrained walking skills. ACM Trans. Graph. 27, 5 (2008), Article 113.

Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel van de Panne.
2011. Locomotion Skills for Simulated Quadrupeds. ACM Transactions on Graphics
30, 4 (2011), Article 59.

Marco da Silva, Yeuhi Abe, and Jovan Popović. 2008. Interactive simulation of stylized
human locomotion. ACM Trans. Graph. 27, 3 (2008), Article 82.

Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. 2010. Feature-based locomotion
controllers. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 131.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus
Rohrbach. 2016. Multimodal Compact Bilinear Pooling for Visual Question Answer-
ing and Visual Grounding. CoRR abs/1606.01847 (2016). http://arxiv.org/abs/1606.
01847

Thomas Geijtenbeek and Nicolas Pronost. 2012. Interactive Character Animation Using
Simulated Physics: A State-of-the-Art Review. In Computer Graphics Forum, Vol. 31.
Wiley Online Library, 2492–2515.

Michael X. Grey, Aaron D. Ames, and C. Karen Liu. 2016. Footstep and Motion Planning
in Semi-unstructured Environments Using Possibility Graphs. CoRR abs/1610.00700
(2016). http://arxiv.org/abs/1610.00700

Radek Grzeszczuk, Demetri Terzopoulos, and Geo�rey Hinton. 1998. Neuroanimator:
Fast neural network emulation and control of physics-based models. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques. ACM,
9–20.

Perttu Hämäläinen, Joose Rajamäki, and C Karen Liu. 2015. Online control of simulated
humanoids using particle belief propagation. ACM Transactions on Graphics (TOG)
34, 4 (2015), 81.

Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. In Towards
a New Evolutionary Computation. 75–102.

Nicolas Heess, Gregory Wayne, Yuval Tassa, Timothy P. Lillicrap, Martin A. Riedmiller,
and David Silver. 2016. Learning and Transfer of Modulated Locomotor Controllers.
CoRR abs/1610.05182 (2016). http://arxiv.org/abs/1610.05182

J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. 1995. Animating Human
Athletics. In Proceedings of SIGGRAPH 1995. 71–78.

Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolutional Ar-
chitecture for Fast Feature Embedding. In Proceedings of the ACM International
Conference on Multimedia (MM ’14). ACM, 675–678. DOI:https://doi.org/10.1145/
2647868.2654889

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. 1996. Probabilistic
Roadmaps for Path Planning in High-Dimensional Con�guration Spaces. IEEE
Transactions on Robotics & Automation 12, 4 (1996), 566–580.

James Ku�ner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika Inoue.
2005. Motion Planning for Humanoid Robots. Springer Berlin Heidelberg, 365–374.

Manfred Lau and James Ku�ner. 2005. Behavior planning for character animation.
In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 271–280.

Jehee Lee and Kang Hoon Lee. 2004. Precomputing Avatar Behavior from Human
Motion Data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’04). 79–87.

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010. Data-Driven Biped Control. ACM
Transctions on Graphics 29, 4 (2010), Article 129.

Sergey Levine and Pieter Abbeel. 2014. Learning Neural Network Policies with Guided
Policy Search under Unknown Dynamics. In Advances in Neural Information Pro-
cessing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q.
Weinberger (Eds.). Curran Associates, Inc., 1071–1079.

Sergey Levine and Vladlen Koltun. 2013. Guided Policy Search. In ICML ’13: Proceedings
of the 30th International Conference on Machine Learning.

Sergey Levine and Vladlen Koltun. 2014. Learning complex neural network policies
with trajectory optimization. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14). 829–837.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided Learning of Control
Graphs for Physics-based Characters. ACM Trans. Graph. 35, 3 (2016), Article 29.
DOI:https://doi.org/10.1145/2893476

Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. 2012. Terrain runner:
control, parameterization, composition, and planning for highly dynamic motions.
ACM Trans. Graph. 31, 6 (2012), 154.

Adriano Macchietto, Victor Zordan, and Christian R. Shelton. 2009. Momentum Control
for Balance. In ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09). ACM, New York, NY,
USA, Article 80, 8 pages. DOI:https://doi.org/10.1145/1576246.1531386

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous

Methods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016). http:
//arxiv.org/abs/1602.01783

Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. 2010. Robust physics-based
locomotion using low-dimensional planning. ACM Trans. Graph. 29, 4 (2010), Article
71.

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel V Todorov.
2015. Interactive Control of Diverse Complex Characters with Neural Networks. In
Advances in Neural Information Processing Systems. 3114–3122.

Igor Mordatch and Emanuel Todorov. 2014. Combining the bene�ts of function approx-
imation and trajectory optimization. In Robotics: Science and Systems (RSS).

Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. 2009. Contact-aware
nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3 (2009), Article
81.

Vinod Nair and Geo�rey E. Hinton. 2010. Recti�ed Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), Johannes FÃĳrnkranz and Thorsten Joachims (Eds.). Omnipress,
807–814. http://www.icml2010.org/papers/432.pdf

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2015. Dynamic Terrain Traversal
Skills Using Reinforcement Learning. ACM Transactions on Graphics 34, 4 (2015),
Article 80.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-Adaptive Loco-
motion Skills Using Deep Reinforcement Learning. ACM Transactions on Graphics
35, 4 (2016), Article 81.

Xue Bin Peng and Michiel van de Panne. 2016. Learning Locomotion Skills Using
DeepRL: Does the Choice of Action Space Matter? CoRR abs/1611.01055 (2016).
http://arxiv.org/abs/1611.01055

Ken Perlin. 2002. Improving Noise. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’02). ACM, New York, NY,
USA, 681–682. DOI:https://doi.org/10.1145/566570.566636

Julien PettrÃľ, Jean-Paul Laumond, and Thierry SimÃľon. 2003. 2-Stages Locomo-
tion Planner for Digital Actors. In SCA ’03: Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 258–264.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
2015. Trust Region Policy Optimization. CoRR abs/1502.05477 (2015). http://arxiv.
org/abs/1502.05477

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. 2016.
High-dimensional continuous control using generalized advantage estimation. In
International Conference on Learning Representations (ICLR 2016).

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating biped behaviors
from human motion data. ACM Trans. Graph. 26, 3 (2007), Article 107.

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. 2000. Policy
gradient methods for reinforcement learning with function approximation. In In
Advances in Neural Information Processing Systems 12. MIT Press, 1057–1063.

Jie Tan, Yuting Gu, C Karen Liu, and Greg Turk. 2014. Learning bicycle stunts. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 50.

Jie Tan, Karen Liu, and Greg Turk. 2011. Stable proportional-derivative controllers.
Computer Graphics and Applications, IEEE 31, 4 (2011), 34–44.

Yuval Tassa, Tom Erez, and Emanuel Todorov. 2012. Synthesis and stabilization of com-
plex behaviors through online trajectory optimization. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 4906–4913.

Hado Van Hasselt. 2012. Reinforcement learning in continuous state and action spaces.
In Reinforcement Learning. Springer, 207–251.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2009. Optimizing Walking
Controllers. ACM Transctions on Graphics 28, 5 (2009), Article 168.

David Wooden, Matthew Malchano, Kevin Blankespoor, Andrew Howardy, Alfred A.
Rizzi, and Marc Raibert. 2010. Autonomous Navigation for BigDog. In ICRA10.
4736–4741.

Jia-chi Wu and Zoran Popović. 2010. Terrain-adaptive bipedal locomotion control.
ACM Transactions on Graphics 29, 4 (Jul. 2010), 72:1–72:10.

Katsu Yamane, James J. Ku�ner, and Jessica K. Hodgins. 2004. Synthesizing animations
of human manipulation tasks. ACM Trans. Graph. 23, 3 (2004), 532–539.

Yuting Ye and C. Karen Liu. 2010. Optimal Feedback Control for Character Animation
Using an Abstract Model. ACM Trans. Graph. 29, 4 (2010), Article 74.

KangKang Yin, Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2008.
Continuation Methods for Adapting Simulated Skills. ACM Transctions on Graphics
27, 3 (2008), Article 81.

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple Biped
Locomotion Control. ACM Transctions on Graphics 26, 3 (2007), Article 105.

Petr Zaytsev, S Javad Hasaneini, and Andy Ruina. 2015. Two steps is enough: no need to
plan far ahead for walking balance. In 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 6295–6300.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

http://arxiv.org/abs/1606.01847
http://arxiv.org/abs/1606.01847
http://arxiv.org/abs/1610.00700
http://arxiv.org/abs/1610.05182
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2893476
https://doi.org/10.1145/1576246.1531386
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://www.icml2010.org/papers/432.pdf
http://arxiv.org/abs/1611.01055
https://doi.org/10.1145/566570.566636
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477

41:14 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

SUPPLEMENTARY MATERIAL

10 LLC WALK CYCLES

Fig. 15. LLC walk cycles. top-to-bo�om: nominal walk, in-place walk,
high-knees, straight leg, straight legs, forward lean, sideways lean.

11 LLC REWARD
rL = wposerpose +wvel rvel +wroot rroot

+wcomrcom +wendrend +wheadinдrheadinд

rpose = exp

(
−

∑
i
wid(q̂i (t),qi)2

)
rvel = exp

(
−

∑
i
wi | | Û̂qi (t) − Ûqi | |2

)
rroot = exp

(
−10(ĥroot − hroot)2

)
rcom = exp

(
−||v̂com −vcom | |2

)
rend = exp

(
−||p̂swinд − pswinд | |2 − ||p̂stance − pstance | |2

)
rheadinд = 0.5cos

(
θ̂root − θroot

)
+ 0.5

hroot represents the height of the root from the ground, vcom is
the center of mass velocity, pswinд and pstance are the positions
of the swing and stance foot. The target position for the swing
foot p̂swinд = p̂0 is provided by the footstep plan, while the target
position for the stance foot p̂stance is provided by the reference
motion. θroot represents the heading of the root on the horizontal
plane, and θ̂root is the desired heading provided by the footstep
plan.

12 HLC SOCCER DRIBBLING REWARD
rH = wcvrcv +wcprcp +wbvrbv +wbprbp

rcv = exp
(
−

(
min(0,uTballvcom − v̂com)

)2)
rcp = exp

(
−d2ball

)
rbv = exp

(
−

(
min(0,uTtarvball − v̂ball)

)2)
rbp = exp

(
−d2tar

)
uball is a unit vector pointing in the direction from the charac-

ter to the ball, vcom the character’s center of mass velocity, and
v̂com = 1m/s the desired speed with which the character should
move towards the ball. Similarly, utar represents the unit vector
pointing from the ball to the target position, vball the velocity of
the ball, and v̂ball = 1m/s the desired speed for the ball with which
to move towards the target. Once the ball is within 0.5 m of the
target and the character is within 2 m of the ball, then the goal is
considered ful�lled and the character receives a constant reward of
1 from all terms, corresponding to the maximum possible reward.

13 LLC STYLIZATION
Learning curves for each stylized LLC is available in Figure 16.
Each network is initialized using the LLC trained for the nominal
walk. Performance is measured using only the style term cstyle ,
measuring the LLC’s conformity to the style objectives.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning • 41:15

Fig. 16. Learning curves for each stylized LLC.

14 HLC LEARNING CURVES

Fig. 17. HLC learning curves.

15 TRANSFER

Fig. 18. Learning curves for fine-tuning HLC’s for di�erent LLC’s, and
retraining HLC’s from scratch.

Fig. 19. Performance using di�erent LLC’s for path following and pillar
obstacles with and without HLC fine-tuning.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

41:16 • Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne

Task + LLC No Fine-Tuning With Fine-Tuning Retraining
Soccer + High-Knees 0.19 0.56 0.51
Soccer + Straight Leg 0.51 0.64 0.45
Soccer + Straight Legs 0.16 0.63 -
Soccer + Forward Lean 0.64 0.69 -
Soccer + Sideways Lean 0.41 0.72 0.74
Path + High-Knees 0.10 0.39 -
Path + Forward Lean 0.43 0.44 -
Path + Straight Leg 0.08 0.19 -
Pillars + High-Knees 0.06 0.43 -
Pillars + Forward Lean 0.43 0.45 -
Pillars + Straight Leg 0.15 0.35 -

Table 3. Performance (NCR) of di�erent combinations of LLC’s and HLC’s. No Fine-Tuning: directly using the HLC’s trained for the nominal LLC. With
Fine-Tuning: HLC’s fine-tuned using the nominal HLC’s as initialization. Retraining: HLC’s are retrained from random initialization for each task and LLC.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 41. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Policy Representation and Learning
	5 Low-Level Controller
	5.1 Reference Motion
	5.2 LLC Reward
	5.3 Bilinear Phase Transform
	5.4 LLC Network
	5.5 LLC Training
	5.6 Style Modification

	6 High-level Controller
	6.1 HLC Training
	6.2 HLC Network
	6.3 HLC Tasks

	7 Results
	7.1 LLC Performance
	7.2 HLC Performance
	7.3 Transfer Learning

	8 Discussion
	9 Conclusions
	References
	10 LLC Walk Cycles
	11 LLC Reward
	12 HLC Soccer Dribbling Reward
	13 LLC Stylization
	14 HLC Learning Curves
	15 Transfer

