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ABSTRACT
Many multi-agent navigation approaches make use of simplified
representations such as a disk. These simplifications allow for fast
simulation of thousands of agents but limit the simulation accuracy
and fidelity. In this paper, we propose a fully integrated physical
character control and multi-agent navigation method. In place of
sample complex online planning methods, we extend the use of
recent deep reinforcement learning techniques. This extension im-
proves on multi-agent navigation models and simulated humanoids
by combining Multi-Agent and Hierarchical Reinforcement Learn-
ing. We train a single short term goal-conditioned low-level policy
to provide directed walking behaviour. This task-agnostic controller
can be shared by higher-level policies that perform longer-term
planning. The proposed approach produces reciprocal collision
avoidance, robust navigation, and emergent crowd behaviours. Fur-
thermore, it offers several key affordances not previously possible
in multi-agent navigation including tunable character morphology
and physically accurate interactions with agents and the environ-
ment. Our results show that the proposed method outperforms
prior methods across environments and tasks, as well as, perform-
ing well in terms of zero-shot generalization over different numbers
of agents and computation time.
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1 INTRODUCTION
The simulation and animation of crowds, or multi-agent navigation,
is an important and difficult task. Methods which produce solutions
that operate in more active environments have many uses, from
NPCs in computer games to simulating crowds in engineering ap-
plications. Given the many uses for such models, we are motivated
to construct as realistic and high fidelity a model as we can. How-
ever, simulating the complex dynamics of numerous characters
and their intentions is difficult. In addition, due to limited informa-
tion about the intentions of other agents it is extremely difficult to
construct rules, policies, or plans that are not invalidated by the
actions of other agents. This paper seeks to address the issues in-
herent in learning such policies for high-fidelity physically-enabled
characters.

Most recently, methods have been proposed to address prior
limitations in multi-agent navigation with Deep Reinforcement
Learning (DRL) approaches. While, DRL has been successful in
solving complex planning tasks given a sizeable computational
budget [30, 40], the multi-agent navigation problem turns the Rein-
forcement Learning (RL) problem into aMulti-Agent Reinforcement
Learning (MARL) problem. However, MARL is a very difficult prob-
lem. The non-stationary learning of multiple changing policies
in largely heterogeneous environments is not easily overcome by
collecting more data [32]. The trend to make progress on MARL
for multi-agent navigation has been to simplify the learning prob-
lem. For example, converting the multi-agent problem into a single
agent Centralized model results in gains in performance but can in-
crease the number of network parameters significantly and impose
a constraint on generalizing to different numbers of agents [26].
While these methods have shown promise, they require signifi-
cant amounts of compute and have not yet displayed success in
complex and dynamic multi-agent environments with articulated
heterogeneous agents.

https://doi.org/10.1145/3424636.3426894
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Most multi-agent steering and navigation approaches, includ-
ing the recent RL approaches, represent individual agents as a
simplified particle disk, or point-mass. The underlying steering
models prior to applications of RL have been generally data-driven
or built on top of expertly defined rules. This leads to plausible
emergent but highly approximated microscopic behaviours and
interactions. These approaches also result in a decoupled steering
and locomotion system, which can limit a simulation from produc-
ing important behaviours. Steering and collisions are high fidelity
phenomenon in the real world. In computer animation, often the
steering and navigation layer is separate from the animation layer
which handles artifacts like footskate and produces visible reactions
to collisions or falls. Due to this separation, animation layers need
to produce complex physical phenomenon in navigation, steering,
and collision avoidance/response from low dimensional informa-
tion. The domain of physical character control has recently made
great progress using RL-based methods to improve the simulation
of physical phenomenon for robust articulated characters. However,
most approaches assume a closed environment without additional
characters with agency of their own and instead focus on control-
ling the biomechanical aspects of a single character.

In this work, we couple, for the first time, physical character
control and multi-agent navigation for robust physical animation of
interacting characters. Specifically, we propose a method to reduce
the complexity in the MARL policy learning problem by separating
physical locomotion and navigation policies while encapsulating
them in one sensory-motor feedback loop inspired by human lo-
comotion. This is achieved by enforcing a mid-level representa-
tion (footstep plans) and learning a ubiquitous and task-agnostic
lower-level skill controller (bipedal walking skills) for task-agnostic
portions of the policy. The higher-level policy learns navigation
and behaviour skills guided by rewards. This use of Hierarchical
Reinforcement Learning (HRL), with a goal conditioned lower mod-
ule [17], allows for exploratory behaviour that is more consistent
in space and time. This approach also allows for heterogeneous
high-level behaviour in a MARL setting where agents are expected
to interact. The combination of high-fidelity physical simulation,
adding structure to a difficult learning problem, and data-driven
machine learning produces a new approach which affords the sim-
ulation and animation of high-fidelity, physically-enabled crowds.
This method represents the first method for heterogeneous multi-
agent physical character control for locomotion, navigation, and
behaviour.

2 RELATEDWORK
In this section, we outline the most related work in the areas of
character and multi-agent control.

2.1 Multi-Agent Navigation
Humanmovement and behaviour simulation has a long and rich his-
tory in the literature [18, 33, 45]. This includes data-driven, physical,
geometric, probabilistic, and optimization based methods. In this
review we focus on machine learning and physical methods related
to the proposed method. A standard method used to implement
human-like behaviours is to represent the components that humans
are concerned with during navigation as physical forces, pushing

and pulling the agent toward their goal and away from collisions.
This approach is famously derived from the particle-based Social
Forces model [14, 15, 20]. As well, the class of velocity obstacle
approaches has been used extensively in games for its fast and colli-
sion free solutions [48, 49, 52]. These velocity obstacle approaches
have been combined with external force constraints to create more
physically enabled approaches [21]. As well, footstep-based models
derived from physical models representing bipedal locomotion as
an inverted pendulum produce tight-packing, high fidelity steering
in crowds [3, 41]. However, these methods consider a geometric
approximation to the biomechanical physical model, represent hu-
mans as more particles, and choose step actions as a function of
step-wise energy costs. This does not consider balance control or
complex steps. As well, learning methods may learn new steps not
previously seen, and the proposed method can produce complex
balance control of arbitrarily detailed fully articulated characters.

More recent learning-based methods using RL have shown to
map particularly well to the agent movement simulation problem
both conceptually and in practice [27, 46]. Models have learned
continuous actions using a curriculum training approach, like prior
expertly defined models [24]. Most recently, Generative Adversarial
Networks have been used to generate socially acceptable trajecto-
ries to resolve the collision free steering problem of crowds [12].
This approach resolves the issue of learning an average or singular
policy for collision avoidance outcomes. Instead, the GAN approach
affords several different but acceptable possible outcomes. In con-
trast, our method avoids particle-based or trajectory-based models
entirely, in favour of drastically more complex humanoid models
to enabled detailed physical simulations that allow us to capture
additional dynamical aspects of multi-agent interactions. The pro-
posed method resolves physical full-body articulation of humanoid
characters, navigation, and locomotion together in one cohesive
approach.

2.2 Character Control
Simulated robot and physical character control is a vibrant area of
research with many solutions and approaches. This area of research
is beyond the scope of this paper. Here, we focus on a particular set
of representative approaches that use optimization, learning, and
Artificial Neural Network (ANN) based methods. Early biped mod-
els recreated neural oscillators to produce walking patterns [42].
Neural models focused on training neural networks by receiving
joint or body sensor feedback as input and producing appropriate
joint angles as output [11, 23, 29]. It has been shown that this type
of walking behaviour can be evolved by using evolutionary opti-
mization techniques on complex neural networks, which eventually
produce oscillator patterns [1, 2]. A biped character’s movement
controller set can also be manually composed using simple control
strategies and feedback learning [9, 53].

Recent RL methods have used humanoid control as a benchmark
for their learning techniques [35, 37, 39]. This work has encoun-
tered a representation learning bottleneck: the policy must first learn
a good representation of the state before it can produce an effective
policy [16, 51]. HRL has been proposed as a solution to handling
challenges with current RL techniques that have trouble estimating
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Figure 1: The Decentralized method is the most general but also the most difficult to optimize due to non-stationary environ-
ments with no assumptions about shared structure across agents. This approach is the closest to fully autonomous agent-based
models used in crowds. The Centralized method effectively converts the problem into a single agent system, which in turn
limits its application and assumes access to the full state. In this paper, we propose a fully decentralized hierarchical approach
with partial parameter sharing in hierarchy. Our decentralized partial sharing approach strikes a balance between these mod-
els, preserving generality while introducing beneficial structure.

rewards over long horizons and sparse signal by enforcing an im-
portant goal representation. One difficulty in HRL design is finding
a reasonable communication representation to condition the lower
level. Some methods pretrain the lower level on a random distri-
bution [28, 34]. While these methods have made great progress on
physics-based humanoid character control the proposed method
addresses, in addition, the multi-agent navigation problem. In this
setting, there are other characters in the environment with their
own agency and goals that can directly interfere with other agents
and how behaviours change over time as their policies are trained,
resulting in a very complex optimization problem to make progress
on. Most physical character control approaches solve a closed-loop
problem, while multi-agent navigation is an open-loop control prob-
lem. These issues make the problem this paper addresses extremely
difficult. The proposed approach is novel and there are no existing
prior approaches which address it.

2.3 Multi-Agent Reinforcement Learning
There are many types of multi-agent learning problems, including
cooperative-competitive and with-without communication [6, 8,
43]. While progress is being made, MARL is notoriously tricky due
to the non-stationary optimization issue, even in the cooperative
case [7, 31]. Recent work, converts the MARL problem to a single
agent setting by using a single Q-function across all agents [26].
Other recent work has begun to combine MARL and HRL but is lim-
ited to simple discrete grid environments, uses additional methods
to stabilize the optimization, and includes communication [13, 44].
Instead, our work tackles multi-agent articulated humanoid sim-
ulation by applying a combination of goal conditioned learning
and partial parameter sharing by assuming all agents share task-
agnostic locomotion and optimize similar goals which allows us
to keep the modularity and autonomy benefits of decentralized
methods while significantly reducing the model size.

3 BACKGROUND
Reinforcement learning is formulated on the Markov Dynamic
Process (MDP) framework: at every time step 𝑡 , the world (including
the agent) exists in a state 𝑠𝑡 ∈ 𝑆 , wherein the agent is able to
perform an action 𝑎𝑡 ∈ 𝐴, sampled from a parameterized policy
𝜋 (𝑎𝑡 |𝑠𝑡 , 𝜃 ) which results in a new state 𝑠𝑡+1 ∈ 𝑆 according to the
transition probability function 𝑃 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 ) with the initial state

distribution 𝑝0 (𝑠0). Performing action 𝑎𝑡 in state 𝑠𝑡 produces a
reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ) from the environment; the expected future
discounted reward from executing a policy with parameters 𝜃 is:

𝐽 (𝜃 ) = E𝑎𝑡∼𝜋 ( · |𝑠𝑡 ,𝜃 ),𝑠𝑡+1∼𝑃,𝑠0∼𝑝0

[
𝑇∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]

(1)

where 𝑇 is the maximum time horizon, and 𝛾 is the discount fac-
tor, indicating the planning horizon length. The agent’s goal is to
optimize its policy, 𝜋 (·|·, 𝜃 ), by maximizing 𝐽 (𝜃 ).

3.1 Hierarchical Reinforcement Learning
In HRL, the original MDP is separated into different MDPs that are
each easier to solve. In practice, this is accomplished by learning
two different policies in two different temporal resolutions. The
lower-level policy is trained first and is often conditioned on a
latent variable or goal 𝑔. The lower-level policy 𝜋 (𝑎 |𝑠, 𝑔, 𝜃𝑙𝑜 ) is con-
structed in such a way as to give it temporally correlated behaviour
depending on 𝑔. After the lower level policy is trained, it is used
to help solve the original MDP using a separate policy 𝜋 (𝑔|𝑠, 𝜃ℎ𝑖 ).
This policy learns to provide goals to the lower policy to maximize
rewards. This improves exploration and, in our proposed approach,
reduces the MARL problem from learning the details of locomotion
to learning goal-based footstep plans for each agent.

3.2 Multi-Agent Reinforcement Learning
The extension to the MDP framework for MARL is a partially ob-
servable Markov game [25]. A Markov game has a collection of
𝑁 agents, each with its own set of actions 𝐴0, . . . , 𝐴𝑁 and partial
observations 𝑋 0, . . . , 𝑋𝑁 of the full state space 𝑆 . Each agent 𝑖 has
its own policy 𝜋 (𝑎 |𝑥𝑖 , 𝜃𝑖 ) that models the probability of selecting an
action for each agent. The environment transition function is a func-
tion of the full state and every agent’s action 𝑃 (𝑆 ′ |𝑆, 𝑎0, . . . , 𝑎𝑁 ).
Each agent 𝑖 receives a reward 𝑟 𝑖 for taking a particular action 𝑎𝑖

given a partial observation 𝑥𝑖 and its objective is to maximize this
reward over time

∑𝑇
𝑡=0 𝛾

𝑡𝑟 𝑖𝑡 , where 𝛾 is the discount factor and 𝑇
is the time horizon. The policy gradient can be computed for each
agent as

∇𝜃𝑖 𝐽 (𝜋 (·|·, 𝜃𝑖 )) =∫
𝑋 𝑖

𝑑𝜃𝑖 (𝑥𝑖 )
∫
𝐴𝑖
∇𝜃𝑖 log(𝜋 (𝑎𝑖 |𝑥𝑖 , 𝜃𝑖 ))𝐴𝜃𝑖 (𝑥𝑖 , 𝑎𝑖 ) 𝑑𝑎𝑖 𝑑𝑥𝑖 (2)
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where𝑑𝜃𝑖 =
∫
𝑋 𝑖

∑𝑇
𝑡=0 𝛾

𝑡𝑝𝑖0 (𝑥
𝑖
0) (𝑥

𝑖
0 → 𝑥𝑖 |𝑡, 𝜃𝑖 )𝑑𝑥𝑖0 is the discounted

state distribution, 𝑝𝑖0 (𝑥
𝑖 ) represents the initial state distribution for

agent 𝑖 , and 𝑝𝑖0 (𝑥
𝑖
0) (𝑥

𝑖
0 → 𝑥𝑖 |𝑡, 𝜃𝑖 )models the likelihood of reaching

state 𝑥𝑖 by starting at state 𝑥𝑖0 and following the policy 𝜋 (𝑎𝑖 , 𝑥𝑖 |𝜃𝑖 )
for𝑇 steps [39]. Here𝐴𝜃𝑖 (𝑥𝑖 , 𝑎𝑖 ) represents the advantage function
estimator GAE(𝜆) [36].

There are numerous approaches to solving the MARL problem.
In the rest of the paper, we outline our proposed method in relation
to prior approaches, as seen in Figure 1.

4 MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

We construct a multi-agent learning structure that takes advantage
of hierarchical design, which we refer to as Multi-Agent Hierar-
chical Reinforcement Learning (MAHRL). We start by describing
the lower level policy design, then we detail the multi-agent higher
level.

4.1 Task-agnostic LC
The LC, the lower-level policy in our design, is designed to learn a
robust and diverse policy 𝜋 (𝑎𝑡 |𝑥𝑡 , 𝑔𝐿𝑡 , 𝜃𝑙𝑜 ) based on a latent goal 𝑔𝐿𝑡
variable. The latent goals 𝑔𝐿 = {𝑝0, 𝑝1, 𝜙𝑟𝑜𝑜𝑡 } consist of the agent
root-relative distances of the next two footsteps on the ground plane
and the desired facing direction at the first step’s end. This goal
description is motivated by work that shows people may plan steer-
ing decisions two-foot placements ahead [54]. The LC is trained to
place its feet as accurately as it can to match these step goals using
the reward 𝑟𝐿𝑔 = exp(−0.2| |s𝑔

𝑐ℎ𝑎𝑟
− 𝑔𝐿 | |2) where s𝑔

𝑐ℎ𝑎𝑟
is the foot

placement action. This RL objective is defined as

𝜂𝐿 (𝜃𝑙𝑜 ) = E𝑠∼𝑝
𝜃𝑙𝑜

[
𝑘∑
𝑡=0

𝛾𝑡𝑟𝐿𝑔 (𝑠𝑡 , 𝑔𝐿𝑡 , 𝜋 (𝑠𝑡 , 𝑔𝐿𝑡 |𝜃𝑙𝑜 ))
]
. (3)

The better the LC learns this behaviour, the more responsive the
controller will be to provided goals. More details on the LC network
design an training can be found in Section 5.2.

4.2 Hierarchical Multi-Agent Learning
Each agent has its own higher-level policy (NC) 𝜋 (𝑔𝐿 |𝑥, 𝜃𝑖 ) and a
shared task agnostic lower level policy (LC) 𝜋 (𝑎 |𝑥, 𝑔𝐿, 𝜃𝑙𝑜 ) then the
full optimization objective with decentralized hierarchical policies
and multiple agents receiving observations is:

𝜂 ′𝑚 = 𝜂𝐻 (𝜃𝑖 ) + 𝜂𝐿 (𝜃𝑙𝑜 ) (4)

= E𝑥𝑖∼𝑝
𝜃𝑖


𝑇 /𝑘∑
𝑡=0

[
𝛾𝑡 (𝑟𝐻 (𝑥𝑖𝑡 , 𝜋 (·|𝑥𝑖𝑡 , 𝜃𝑖 ))

] (5)

+ E𝑥𝑖∼𝑝
𝜃𝑙𝑜

[
𝑘∑
𝑡=0

𝛾𝑡𝑟𝐿 (𝑥𝑖𝑡 , 𝑔𝐿𝑡 , 𝜋 (·|𝑥𝑖𝑡 , 𝑔𝐿𝑡 , 𝜃𝑙𝑜 ))
]

(6)

where the higher-level policy operates once every 𝑘 steps. We no-
tice that if the separation between the two control levels is chosen
carefully, we can reduce the complexity of this optimization with
no loss in generality. In particular, in multi-agent navigation we
can conceptually separate two control policies by looking at the
human locomotor control loop of bipeds for inspiration. The hu-
man sensory-motor control loop involves supraspinal input and
reasoning at the highest level with Central Pattern Generators at
the mid-level and motor/sensory neurons controlling functional
morphology at the lowest level [47]. We separate the proposed
control policies into high-level sensing of the environment for
planning, navigation, and behaviour, and then low-level physical
control of joints and cyclic locomotion. We find that each of the
lower-level policies is solving the same goal conditioned MDP and
can, therefore, be shared across the independent higher-level poli-
cies. This method allows us to introduce more structure into the
difficult multi-agent optimization problem. This change alters the
underlying MDP, such that the policy is queried for a new action
every 𝑘 timesteps. This also changes the MDP method by reducing
the dimensionality of the action space to specifying goals 𝑔 while
using the low-level policy to produce more temporally consistent
behaviour in the original action space and further reduce variance
introduced into the problem.
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The use of HRL is key to the method. When the challenge in
MARL is dealing with what can be large changes in the distribution
of states visited by the agent, the use of a temporally correlated
structure given by the shared goal-conditioned LC significantly
reduces the non-stationarity. Not only is each agent sharing its
network parameters, but this portion has also been carefully con-
structed to provide structured exploration for the task. This is in
contrast to centralized methods that take a step away from the goal
of solving the heterogeneous problem in a scalable way. The use of
the LC controls the way 𝑑𝜃𝑖 (𝑥𝑖 ) can change for each agent, making
it easier for each agent to estimate other agents potential changes
in behaviour due to the shared LC being trained to produce a useful
behaviour that is a subset of the full space. As we will show later
in the paper, this combination allows us to train capable humanoid
navigation agents in a single day with modist compute.

5 LEARNING HIERARCHICAL
MULTI-AGENT CONTROL

To solve the hierarchical learning problem, we train in a bottom-up
fashion, training the LC first, and then sharing the LC policy among
heterogeneous NC policies. The levels of the hierarchy communi-
cate through shared actions and state in a feedback loop that is
meant to reflect human locomotion, as seen in Figure 2. The policy
parameters are optimized over the RL objective using the Prox-
imal Policy Optimization (PPO) algorithm [37] unless otherwise
specified.

5.1 Action & State Spaces
The LC is responsible for stable character locomotion. As such the
LC action space controls per joint target positions for per joint PD
controllers. The LC state is largely inspired by DeepLoco [34]. The
NC’s objective is to provide footstep placement goals 𝑎𝐻 = 𝑔𝐿 for
the LC. This shared action and state space allows the levels of the
hierarchy to be fundamentally tied together. In addition to the foot-
step placement goals the LC takes in a number of other information
useful for cyclic locomotion patterns, i.e. the articulated character
state. This includes a desired goal oriented heading, the current
centres of mass of each link in the character, their relative rota-
tion, and angular velocities. Additionally, a phase variable provides
information on stride progress. The LC is queried at 30Hz.

The NC uses as input an egocentric relative velocity field, located
with respect ot the agent as in Figure 6a & 6a. This egocentric
relative velocity field 𝐸 is 32 × 32 × 2 samples over a space of 5x5 m,
starting 0.5 m behind the agent and extending 4.5 m in front, shown
in the left hand side of Figure 2. The egocentric relative velocity field
consists of two image channels in the x and y directions of a square
area directly in front of the agent, such that each point in the field
is a vector (x,y). Each sample is calculated as the velocity relative
to the agent, including both agents and static obstacles [5, 50]. The
current pose of the agent is included next, followed by the NC goal.
The NC goal 𝑔𝐻 consists of two values, the agent relative direction
and the distance to the current spatial goal location. As noted in
Section 5.1, the actions space of the NC is a two-step, or stride, plan
passed to the LC as input. The NC is queried at 2 Hz.

5.2 Network and Training
5.2.1 NC. The NC uses convolutional layers followed by dense
layers. The particular network used is as follows: 8 convolutional
filters of size 6 × 6 and stride 3 × 3, 16 convolutional filters of size
4×4 and stride 2×2, the structure is flattened and the character and
goal features s𝑐ℎ𝑎𝑟 , 𝑔𝐻 are concatenated, a dense layer of 256 units
and a dense layer of 128 units are used at the end. The network
uses Rectified Linear Unit (ReLU) activations throughout except for
after the last layer which uses a tanh activation that outputs values
between [−1, 1]. All network inputs, 𝑆 , are normalized 𝑠 ← (𝑠 −
𝑚𝑒𝑎𝑛(𝑆))/𝑣𝑎𝑟 (𝑆) over all states observed so far 𝑆 . A similar running
variance over all rewards scales the rewards used for training. That
is, the variance is computed from a running computation during
training that is updated after every data collection step. The batch
size used for PPO is 256, with a smaller batch size of 64 for the value
function. The policy learning-rate and value function learning-rate
are 0.0001 and 0.001, respectively. The value function is updated
four times for every policy update. The NC also uses the Adam
stochastic gradient optimization method [22] to train the ANN
parameters. In all environments, we terminate the episode when
more than half of the agents have fallen down. The target value for
a fallen agent is set to zero.

5.2.2 LC. We train the LC using a similar learning system, where
the network does not have a convolutional component and instead
includes a bi-linear phase transform as the first layer [34]. The agent
is trained to match motions from a database of stepping actions at
different angles and distances by finding the proper sequence of
actions in the form of PD controller target positions for each joint.
Depending on the particular goal 𝑔𝐿𝑡 the mocap motion that will
result in the closest match to the footstep locations will be chosen.

5.3 Rewards, Environments, & Tasks
5.3.1 LC. The reward function used for this policy will encourage
the agent to both match the motion capture and the desired footstep
locations from the goal. We note that the source motion capture
data is purposefully small. We train the LC on few samples of steps
totalling less than minute of singular strides. Our hypothesis is,
the combination of curriculum learning at the LC level and the
proposed approach will lead to learning robust stepping and bal-
ance control from little data. To further improve robustness during
crowded locomotion, we constructed a curriculum of simulated
pushes and bumps. This curriculum is designed to simulate the
types of interactions the agent will encounter in a crowded envi-
ronment with other agents. This curriculum consists of applying
temporary forces in random directions to the upper and lower body
of the agent, including the shoulders, as well as hitting the character
with projectiles.

5.3.2 NC. We construct a collection of physics-based simulation
tasks to train and evaluate the proposed method within a rich
physically-enabled RL environment [4]. At initialization, each agent
is randomly rotated, and the initial velocities of the agent’s links are
determined by a selected motion capture clip using finite differences
and rotated to align with the agent’s reference frame. Goal locations
𝑔𝐻
𝑖

for the NC are randomly generated in locations that are at least
1 m away from any obstacle. Each agent is randomly placed in a
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Name Agents Obstacles Size Task Type
Procedural [3, 5] [0, 10] 10 × 10 m Cooperative
Bottleneck [3, 5] 4 10 × 20 m Cooperative
Pursuit 3 [0, 10] 10 × 10 m Competitive

Table 1: Scenarios and their main parameters.

collision free starting space in the scene. The number and density
of agents in the simulation vary depending on the task. The reward
function used for each of the tasks is a combination of distance-
based rewards | |𝑝𝑜𝑠 (𝑎𝑔𝑒𝑛𝑡𝑖 ) − 𝑔𝐻𝑖 | |, where 𝑝𝑜𝑠 (𝑎𝑔𝑒𝑛𝑡𝑖 ) computes
the location of agent 𝑖 , and large positive reward for reaching a
goal:

𝑟𝐻 =

{
20 if | |𝑝𝑜𝑠 (𝑎𝑔𝑒𝑛𝑡𝑖 ) − 𝑔𝐻𝑖 | | < 1
𝑒𝑥𝑝 (−1| |𝑝𝑜𝑠 (𝑎𝑔𝑒𝑛𝑡𝑖 ) − 𝑔𝐻𝑖 | |

2) otherwise.
(7)

The sparse reward component places value on reaching goals as
quickly as possible, while the continuous component helps with
learning policies which steer toward goals. We note that predictive
reciprocal collision avoidance policies emerge in training as high
value approaches to maximizing the above rewards.

The following are descriptions of our physics-based training and
testing environments. We summarize the technical details of the
environments in Table 1.
Procedural This environment, shown in Figure 3a, represents the
challenging task of articulated multi-agent navigation in an envi-
ronment with other agents and procedurally generated obstacles.
Bottleneck In this environment, agents need to learn to coopera-
tively pass through the Bottleneck to avoid knocking each other over.
This environment, shown in Figure 3b, represents the challenging
task of articulated multi-agent navigation in density modulated
environments.
Pursuit In this environment, one agent (agent 0, or the pursued
agent) has the same navigation goal as in the Procedural environ-
ment. Two additional agents (pursuer 0,1) have the goal of chasing,
or being as close to agent 0 as possible, shown in Figure 3c. The
different goals of the agents result in a challenging, multi-agent
competitive environment.

6 RESULTS
In this section, we demonstrate the efficacy of MAHRL from sev-
eral perspectives. First, we review pitfalls of comparative crowds
analysis with respect to the proposed method, and propose ade-
quate baseline methods drawn from the state-of-the-art in similar
problem spaces. We examine the performance of MAHRL in terms
of learning, collisions, physical robustness, and strategy learning.
Then we examine the performance in terms of computation cost
and generalizability over the number of agents in the environment.

6.1 Baselines
Comparative analysis with prior methods is difficult because the
proposed method represents a new form of crowd simulation that
has no baseline. This problem is illustrated in depth in Figure 4.

Because of this we attempt to learn the problem we solve using
other, state-of-the-art, methods in similar control problems.

To understand the performance of the proposed method, we
compare the performance of MAHRL with respect to Centralized
and Decentralized methods on the environments and tasks outlined
in Section 5.3.2. Specifically, we compare MAHRL to Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) [26], Nonhierarchi-
cal [38], and MAHRL using the TD3 method [10] in heterogeneous
and homogeneous environments for the NC training as described
in Section 5.2. Nonhierarchical in this paper refers to training a pol-
icy in a flat approach, i.e. without hierarchy, using out-of-the-box
methods where locomotion and navigation behaviour are a single
policy. MADDPG is an approach to training multi-agent navigation
and behaviours where, during training, the value network of the
deep learning model is shared among agents and observes all agent
states. MADDPG has state-of-the-art results in the complex navi-
gation domain and represents a partially Centralized approach to
MARL. Additionally, we train the proposed method, MAHRL, with
and without using TD3 to understand the sensitivity of the method
to training technique, and the value of undervaluing policies dur-
ing training. To evaluate the robustness of our method, we also
evaluate two settings, homogeneous (Homo) and heterogeneous
(Hetero) agents. In the Homo case, the agents share the same high
level 𝜃𝑖 policy parameters. The Hetero case is the more common
MARL setting with individual policies for each agent as seen in the
right-hand side of Figure 2.

6.2 Learning Results
To understand the base performance of the proposed method, we
evaluate the mean reward signal during training first. Figure 5a
captures comparative training experiments showing the value of
the proposed method with respect to mean reward and training
steps. In the Procedural environment, MAHRL outperforms base-
lines and using TD3 further improves performance. The proposed
method specifically maximizes reward in the heterogeneous en-
vironment where all agents are learning their own policies. The
baseline, MADDPG, learns a policy good enough to locomote but
not to learn coordinated behaviour, hence the low mean reward.
This is likely related to the large Q-network needed for Central-
ized approaches that are a function of the number of agents. In the
Pursuit environment, MAHRL outperforms MADDPG in terms of
mean reward over iterations and quality of the policy. Agents learn
not only to navigate but beneficial strategies for the environment
begin to emerge. Qualitatively, throughout training, our method
learns successful navigation strategies shown in Figure 3a as well as
in Figure 9 on a full humanoid character (we later use this humanoid
character to qualitatively evaluate physical robustness). The results
for the Decentralized (Nonhierarchical) approach are not shown as
the method failed to learn even simple standing behaviour.

We average the gradients on the input features for the learned
value function over 16 rollouts, we show that MAHRL also learns
an interesting bias in its value function, an estimate of the agent’s
future reward, which encourages agents to make right turns over
left. This distance attenuated bias toward the rightward direction
shows that MAHRL learns to value predictive reciprocal collision
avoidance. There is a symmetric policy for left-side bias as well,
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(a) Procedural (b) Bottleneck (c) Pursuit

Figure 3: (a) Agents reaching a series of targets in arbitrary environments. (b) Egress scenarios with a group of 5 agents. (c)
Rasterized overlays from the pursuit environment, where the pursuer agents (red) learn to work together to the corner and
tackle the navigating agent (blue).

Path Collision Corridor
Particle Humanoid

Collisions
Particle Humanoid Particle Humanoid

10m

RVO

PAM

MAHRL

(a) (b)

Figure 4: The proposed method is the first of its kind, fundamentally combining physical character control and crowd sim-
ulation. Because of this, primary methodologies in comparative crowds analysis have shortcomings which makes methods
not representative as outline in (a). First the humanoid’s centre of mass trajectory forms a piecewise parabolic curve unlike
particle models where the same path is a straight line. Similarly, the underlying humanoid representation is composed of
several capsule and sphere colliders, making the collision corridor and collision detection of the humanoid more complicated,
whereas particlemodels can only detect collisionwithin their particle bounds–typically a single circle or capsule. (b) compares
the final trajectories of RVO[48], PAM [20], and MAHRL in a typical oncoming collision task between two agents.

(a) Procedural (b) Pursuit

Figure 5: Comparative studies of the learning curves of MAHRL, MAHRL (TD3), MADDPG, and Nonhierarchical for the
Procedural environment andMAHRL&MADDPG for the pursuit environment. Nonhierarchical is not shownhere as it did not
make progress on any task. In the Pursuit environment, we compare theMAHRLwith the state-of-the-artMADDPG approach.
The proposed MAHRL approach outperforms across environments and learns well with heterogeneous agents, even with few
training steps.
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(a) ego field x (b) ego field y

Figure 6: Averaging the gradient magnitudes of the value
network velcity field inputs reveal that the method learns
to value an egocentric field (agent centred middle left and
facing right) with a right side bias. This affords predictive
reciprocal collision avoidance – a high value strategy in nav-
igation.

and the selection of right over left here represents chance. Though
bias could be purposefully introduced through rewards, this bias
emerges through learning. This is shown in Figure 6a and Figure 6b.

6.2.1 Collision Analysis. To evaluate learned navigation policies
quantitatively, we capture the mean number of collision events over
all agents for each episode in several instantiations of the Proce-
dural environment. Collisions are a common metric in synthetic
crowds and navigation methodologies. Here, we extend the com-
mon definition of collision from overlaps of the agent disk model to
physical collisions with body segment colliders. For each method,
we perform 155 policy rollouts over several random seeds. The
results are shown in Figure 7. A Kruskal-Wallis rank-sum test and
post-hoc Conover’s test with both False Discovery Rate (FDR) and
Holm corrections for ties show the MAHRL methods significantly
outperform others (𝑝 < 0.01). We can see that MAHRL produces
fewer collisions than other methods.

6.2.2 Physical Robustness. To evaluate learned navigation policies
qualitatively, we show that agents can successfully and continu-
ously navigate complicated environments of forced interactions
of the Procedural environment, as seen in Figure 3a [19]. Agents
also learn tight packing behaviour in the Bottleneck environment
as shown in Figure 3b. What is most interesting is that agents
learn these environment and task specific behaviours, in addition
to navigation and collision avoidance, when using only the rewards
described in Section 5.3.2. While environment and goal condition-
ing drives the emergent policies, the reward signal is maximized
when agents learn reciprocal collision avoidance and navigation
policies.

To evaluate physical robustness, we show that humanoid char-
acter agents can handle bottleneck scenarios of increasing density.
Starting with one agent and moving to 50 agents we show that the
humanoids learn to successfully complete the scenario up until a
critical point (> 0.35 agents/m2 spawning). The results for 10, 20,
and 50 agents can be seen in Figure 10. In the 50 agent scenario, the
agents begin to experience critical stability failures, where physical
interactions lead to tripping, falling, and eventually trampling. In
this paper, as noted in Section 5.2 with respect to the LC, we are less

Centralized* Decentralized~ MAHRL(TD3)* MAHRL* MAHRL~
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Figure 7: Comparative analysis of collisions counts across
all baselines, MADDPG (Centralized), MAHRL with (*) and
without ()̃ heterogeneous agents, and Nonhierarchical (De-
centralized) in the Procedural environment using a Kruskal-
Wallis rank-sum test and post-hoc Conover’s test with both
FDR and Holm corrections for ties. MAHRL outperforms
both MADDPG and Nonhierarchical methods in collision
avoidance during steering and navigation.

interested in the fall animations themselves and more in the ability
for the agents to learn robust walking policies. In our simulations,
we leave the policy controller running when agents fall, hence the
unnatural look post-fall. However, several additions could be used
to handle falls including the addition of more motion capture data,
ragdoll physics switching, get up controller/policy learning. Prior to
adverse fall conditions, our full body agents are capable of staying
upright even in the presence of crowded pushing, tripping, and
stumbling. This level of physical fidelity is not possible with past
multi-agent navigation methods, where these behaviours are often
handled by a separate animation system.

6.2.3 Multi-Agent Games. From a training perspective, we note
that quantitatively the three agents all begin to increase their aver-
age reward via their navigation objective using MAHRL. As learn-
ing progresses the pursuing agents outperform the pursued agent
(agent 0), this can be seen in Figure 8. Qualitatively, as they get
better, the pursued agent has an increasingly difficult time reaching
its navigation targets while being chased. We show a rasterized
version of an example episode from the Pursuit environment in Fig-
ure 3c, where the pursuer agents have learned to corner and tackle
the pursued agent.

6.3 Computation and Generalization
In this section, we show two results, the computational costs of
increasing the number of agents and the model generalization to
increased numbers of agents. For two scenarios, Procedural and
Bottleneck, the number of agents is increased, and we record the
average reward and computational performance (defined as the
amount of time it takes to perform the 16 rollouts (each rollout
is 64 * 15 control steps) for training using a single thread). The
agent-computation time curve in Figure 11a indicates a linear trend
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agent 0
pursuer 0
pursuer 1

Figure 8: Learning curve for the 3 individual agents in the
Pursuit simulation. The agent 0’s ability to reach its goal re-
duces as the other pursuers improve at seeking agent 0.

Figure 9: Large numbers of humanoid characters navigating
the Procedural environment.

Figure 10: Increasing density in a bottleneck lead to robust
physical interactions in top row: 10 agent, middle row: 20
agent, and bottom row: 50 agent humanoid egress scenarios.
In critical scenarios (> 0.35 agents/m2), physical interactions
lead to tripping, falling, and even trampling.

in computational cost. While at agents’ counts in the 20s the simu-
lation is not real-time; the most computationally expensive part is
not the learning system but the physics simulation.

The typical MARL framework is designed for a fixed number
of agents. Here we show that our method provides some ability
to generalize to different numbers of agents without additional
training which also allows us to increase training efficiency by
enabling training on fewer agents while being able to simulate
with many more during test time. The average reward for two
different types of policy training styles are compared. The first

(a) Computational Cost (b) Agent numGeneralization

Figure 11: The performance of MAHRL from two quantita-
tive perspectives, (a) the computational performance with
respect to agent count and (b) the generalization perfor-
mance with respect to average reward value. The yellow
bottleneck_multi-task curve is a policy learned over mul-
tiple environments. The green multi-task curve is a single
environment policy tested over multiple environments.

method trains on a single task at a time; the second method uses
multi-task learning, training across all tasks at once, in hopes that
a more generalizable, task-independent structure is acquired. The
multi-task method, often preferring to optimize easier tasks, does
not appear to learn more robust policies compared to the Procedural
based method. All generalization results can be seen in Figure 11b.
However, generalization remains a known and open issue of DRL
methods [55].

7 CONCLUSION
The proposed approach represents the first model to produce fully
articulated physical crowd agents. The evaluation of this approach
shows how valuable it is for addressing the non-stationary learning
problem of MARL in complex multi-agent navigation scenarios. We
suspect methods such MAHRL will be useful in high fidelity inter-
actions in gaming to produce more rich interactions with virtual
characters and NPCs. In particular, virtual worlds may benefit from
high fidelity physically-enabled and reactive crowds. As well, these
methods can be applied in safety-critical analysis to drive rich dy-
namic analysis of dangerous situations where physical interactions
are key indicators of safety failures.

While our method produces promising results, the work is lim-
ited by the fixed LC partial parameter sharing. Since this approach,
while it mitigates the non-stationary problem, leaves the agents’ lo-
comotion skill-set homogeneous. There is room for research in the
area of training the LC and NC concurrently. There is also room for
broader LC skill-set training and richer shared action representa-
tions which may mitigate this problem. For the NC, we introduced
a set of reward functions to encourage human-like behaviour while
navigating with other agents. The literature motivates these re-
wards, but balancing them is its own challenge. In the future, it may
be beneficial to use additional data-driven imitation terms to assist
in learning from human-like paths. Finally, considerable effort was
made to create combined locomotion, navigation, and behaviour
controller that is robust to the number of agents in the simulation.
However, robust generalization remains an open problem.
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