
Feedback Control For Cassie With Deep Reinforcement Learning

Zhaoming Xie1 Glen Berseth1 Patrick Clary2 Jonathan Hurst2 Michiel van de Panne1

Abstract— Bipedal locomotion skills are challenging to de-
velop. Control strategies often use local linearization of the
dynamics in conjunction with reduced-order abstractions to
yield tractable solutions. In these model-based control strate-
gies, the controller is often not fully aware of many details,
including torque limits, joint limits, and other non-linearities
that are necessarily excluded from the control computations
for simplicity. Deep reinforcement learning (DRL) offers a
promising model-free approach for controlling bipedal loco-
motion which can more fully exploit the dynamics. However,
current results in the machine learning literature are often
based on ad-hoc simulation models that are not based on
corresponding hardware. Thus it remains unclear how well
DRL will succeed on realizable bipedal robots. In this paper,
we demonstrate the effectiveness of DRL using a realistic
model of Cassie, a bipedal robot. By formulating a feedback
control problem as finding the optimal policy for a Markov
Decision Process, we are able to learn robust walking controllers
that imitate a reference motion with DRL. Controllers for
different walking speeds are learned by imitating simple time-
scaled versions of the original reference motion. Controller
robustness is demonstrated through several challenging tests,
including sensory delay, walking blindly on irregular terrain
and unexpected pushes at the pelvis. We also show we can
interpolate between individual policies and that robustness can
be improved with an interpolated policy.

I. INTRODUCTION

Walking dynamically like humans is a difficult task for
bipedal robots due to inherent instability and underactuation.
Model-based approaches have demonstrated good success
in this area, e.g., [1], [2]. These approaches often require
mathematical models to describe the robots dynamics to
produce nominal trajectories in an offline process. Local
feedback controllers are then designed to track these trajec-
tories. However, the region of attraction for these controllers
are often small, allowing for only modest perturbations.
To overcome these, gait libraries [2] can be designed to
increase robustness. Fundamentally, however, the design pro-
cess and the inherent simplifications in designing the local
feedback controllers may result in controllers that do not
fully exploit the robot’s capabilities. Deep reinforcement
learning (DRL), on the other hand, provides a method to
develop controllers in a model-free manner, albeit with its
own learning inefficiencies. [3] and [4] have demonstrated
that DRL can generate controllers for challenging locomotion
skills. However, the articulated models used are simplified in

1Zhaoming Xie, Glen Berseth and Michiel van de Panne are with De-
partment of Computer Science, University of British Columbia, Vancouver,
BC, Canada. Email: {zxie47, gberseth, van}@cs.ubc.ca.

2Patrick Clary and Jonathan Hurst are are with the Dynamic
Robotics Laboratory, School of Mechanical, Industrial and Manufac-
turing Engineering, Oregon State University, Corvallis, OR, USA.
Email:{claryp,jonathan.hurst}@oregonstate.edu

Fig. 1: Left: The bipedal robot Cassie developed by Agility
Robotics. Each leg of Cassie has 7 degrees of freedom, as
indicated in the picture. Red arrows indicate active joints
that can be controlled by motors and yellow arrows indicate
passive ones. Right: Simulated model of Cassie in MuJoCo.

nature and are not a representation of any particular existing
bipedal robot. As a result, the prospects of deploying a
learned controller on a large bipedal robot is not clear. While
some work has shown the effectiveness of DRL on robots
[5] [6], these robots are often fully actuated.

This paper presents a framework for learning walking con-
trollers on a realistic model of the Cassie biped, developed by
Agility Robotics, shown in Fig. 1. By formulating a feedback
control problem as searching for an optimal imitation policy
for a Markov Decision Process, we can apply DRL to train
controllers for bipedal walking tasks in a model-free manner
with a single reference motion. Without needing to make
the model-based simplifications commonly used to tractably
realize control policies, DRL is able to exploit the full
dynamics of the robot and produce robust controllers. We
test the robustness of our controllers by introducing sensory
delays, testing blind walks on various types of terrain, and via
random pushes applied to the body. Policies that can make
the robot walk at a different speed can be constructed by
retraining on a modified version of the reference trajectory
that has been scaled in time. We can further make the robot
speed up and slow down by interpolating between these
policies. These results provide a degree of confidence that we
can deploy a controller trained using DRL on a real biped.

II. RELATED WORK

Deep reinforcement learning has been applied to multiple
robotics tasks, e.g., [5] [6]. While these results are impres-
sive, the robots are fully actuated robotic arms. In this work,
we are interested in the control of a bipedal robot to perform
dynamic walking motions, which is inherently underactuated
and unstable.

There exist various examples of using reinforcement learn-
ing for bipedal robot walking tasks, e.g. [7] [8]. The work in
this direction has often been applied to simple bipeds with
large feet that will not fall during the training process [7] or
that walk in 2D [8]. By using a multi-layer neural network,
we are able to train more capable controllers that can make
an unstable biped walk in 3D.

The application of deep reinforcement learning to the
problem of bipedal locomotion has recently become a popu-
lar benchmark problem in reinforcement learning. However,
the actuators are typically assumed to be capable of large
torques and the resulting motion is unrealistic [9] [10]
[11]. As a result, it is unlikely that these motions can be
realized on a real robot. Even when the resulting motions are
more realistic [3] [4], the models considered are constructed
from simple primitives such as boxes or cylinders, and are
generally not good representations of real world robots.
In this work, we directly work with a realistic model of
the bipedal robot Cassie, where the actuators produce only
limited torques that match the capability of the real robot,
and physical constraints such as the reflected inertia of the
actuators are also modeled in detail.

Feedback control methods have been shown to be suc-
cessful on complex bipedal robots. Using the dynamics of
the robot, desired behaviors can be computed offline using
optimal control techniques such as direct collocation [12]
and quadratic programming (QP) [1], and local control can
then be computed online to make the robot track these
desired motions. However, during the online control phase,
linearization of the dynamics is often used, with a cor-
responding limitation on the robustness. Gait libraries [2]
can be used to help a robot handle larger perturbations
by computing multiple gaits offline. In this work we use
only a single reference trajectory and learn a controller that
can handle large disturbances. Furthermore, since we are
using model-free methods, the controller does not need to
work with simplified models of the dynamics, as required
by numerous model-based approaches. Through experience,
the full complexities and limitations of the robot dynamics
can be taken into account by the controller. This comes with
the caveat that the policy is developed in simulation and
that additional effort may still be required to deal with the
mismatch between the detailed simulation and reality.

III. BACKGROUND

In this section, we briefly review reinforcement learning,
feedback control and how we transform a feedback control
problem into a reinforcement learning problem.

A. Reinforcement Learning and Policy Gradient Methods

A task in RL is often presented in as a Markov Decision
Process (MDP) defined by a tuple {S,A, p, γ, r}, where S ∈
Rn is the state space, A ∈ Rm is the set of possible actions,
and γ ∈ [0, 1] is the discount factor. The transition function
p : S × A× S → [0, 1] defines the dynamics of the system,
and the reward function r : S × A → R provides the agent
with a scalar reward at each state transition. A policy π :
S × A → [0, 1] represents the action distribution given the
current state st. The goal in reinforcement learning is to find
a policy π that maximizes the agent’s expected return. In the
case of a parametric policy πθ with parameters θ, the optimal
policy can be determined by optimizing the objective J(θ),

max
θ
J(θ) = Eτ∼ρpiθ (τ)

[
T−1∑
t=0

γtr(st, at)

]
where ρπ represents the distribution of trajectories
τ = (s0, a0, ..., sT−1, aT−1, sT) induced by π.

In deep reinforcement learning, θ often represents the
set of parameters for a multi-layer neural network. Policy
gradient methods [13] are a popular class of algorithms for
finding the optimal θ. These methods iteratively improve the
policy by estimating the gradient of J(θ) using rollouts and
performing gradient ascent on the objective.

B. Feedback Control

In the control literature, bipedal robot locomotion control
is often designed to be a feedback law for tracking some de-
sired behavior. Given a dynamical system xt+1 = f(xt, ut),
where xt, xt+1 ∈ X ∈ Rn are the states of the dynamical
system at time t and t + 1, and ut ∈ U ∈ Rm is the
control input at time t, the equation of motion f : Rn ×
Rm → Rn describes how the dynamical system evolves
over time. Trajectory optimization is often done offline to
produce a nominal trajectory with X̂ = {x0, x1, . . . , xT }
and Û = {u0, u1, . . . , uT−1}that satisfies the equation of
motion. Then a feedback law ut = g(xt, x̂t) is calculated
online to track the nominal trajectory by minimizing some
distance metrics in X and U . This usually involves solving
a QP by linearizing the system dynamics along the nominal
trajectory [14] [1]. A popular choice is the Time Varying
Linear Quadratic Regulator (TVLQR) [15], where one solves
the following QP:

minimize
T−1∑
t=1

δTutRδut + δTxtQδxt

subject to δxt+1 = Atδxt +Btδut

Here δxt = xt− x̂t, δut = ut− ût, and At, Bt come from the
linearized dynamics around f(x̂t, ût). The distance metrics
considered are quadratic functions defined in X and U .

C. Feedback Control interpreted as Reinforcement Learning
Problem

Given the dynamical system above and a reference motion
X̂ , we can formulate an MDP. Let the set of states S =
X × X̂ , and actions A = U , then a natural choice for

the transition function p : S × A × S → [0, 1] is by
setting p((f(xt, ut), x̂t+1)|(xt, x̂t), ut) = 1 and setting it to
0 everywhere else. The reward function r can be specified as
the negative of the distance metrics defined in the space of
X and U . Then the original feedback control problem can
be viewed as finding the optimal policy for this MDP, and
can be solved using reinforcement learning algorithms.

Note that if we set the discount factor λ = 1, linearly
approximate the transition function p and let the metrics be
quadratic functions, then finding the optimal policy is equiva-
lent to solving a TVLQR. The result would be a time varying
linear policy. But since it is based on a linear approximation,
applying it to highly nonlinear systems like the Cassie robots
can fail when subjected to large disturbance.

In this paper we use a reference trajectory with only state
information, so we only consider metrics defined in the state
space X of the dynamical system for our reward function. By
parameterizing the policy using a multi-layer neural network,
therefore presenting a much richer policy space than that
afforded by linear controllers. A more expressive policy may
allow the controllers to develop more sophisticated recovery
strategies in the presence of significant perturbations.

IV. METHODS

A. State Space and Action Space

As mentioned in the previous section, the state for the
MDP problem we are trying to solve is represented as the
state and reference state of the dynamical system. In the
case of Cassie, the state consists of the pelvis’ position,
orientation, velocity and angular velocity, plus the joint angle
and joint velocity of all the active and passive joints. The
combined representation yields an 82D state space. For this
specific reference motion, the robot is moving in the x
direction, so we are neglecting the x position in our state
representation, yielding a final 80D state space.

As shown by Peng et al. [16], using PD control targets as
the action space can greatly improve learning efficiency. We
are choosing target joint angles for the active joints as our
action a, and a low level PD controller applies the following
torque to track these joint angles: τ = P (a − pactive) −
D(vactive), where P,D are the PD gains and pactive, vacitve
are the current joint angles and joint velocities for the active
joints. This produces a 10D action space. With the reference
motion, a natural choice for target joint angles would be the
reference joint angles. However, due to the underactuation of
the robot, directly applying PD control to track the reference
joint angles will quickly lead to the robot falling. However,
the reference joint angles provide a hint as to what a desired
action might be, instead of directly outputting the target
angles, we choose to let our policy learn how to augment
the reference angles. So, our policy output is in the form of
δa, and the action we use is a = â + δa, where â is the
reference joint angles of the active joints from the reference
motion. The control framework can be seen in Fig. 2.

Fig. 2: Diagram for our control framework. The policy takes
the robot state and reference state as input, and the output is
added to the reference joint angles for the active joints. The
result is then provided to a low level PD controller as target
joint angles.

B. Reference Motion and Simulation

In principle, our framework can incorporate any reference
motion that describes how the robot is expected to move over
time. In this paper, we use a reference motion of Cassie
taking two steps in the +x direction. We then extend this
two-step motion by copying it repeatedly, except for the
value describing the x position of the pelvis, which increases
smoothly over time to represent the robot’s continuous for-
ward movement.

At the beginning of each episode, the pose of the robot is
set to a state randomly selected from the reference motion.
To avoid the excess exploring of poor states, we terminate
the episode early and set the remaining rewards to be 0 if
the reward the robot received in the previous state is below
some value or when the height of the pelvis makes the robot
unstable. Further details are described in Section V.

C. Network and Learning Algorithm

We use an actor-critic learning framework for our ex-
periments. The actor and critic are parametrized by neural
networks with parameters θ and φ, the network structure is
shown in Fig. 3. Two-layer neural networks are used for both
actor and critic, with all hidden layers having a size of 256.
ReLU activations are used between the hidden layers, and
the output of the actor is passed through a TanH function
to limit the range of the final output.

We use the Proximal Policy Optimization (PPO) [17] to
optimize our policy. PPO is an on-policy, model-free rein-
forcement algorithm based on the stochastic policy gradient
framework, and there exist multiple variations in practice.
PPO has been successfully applied to bipedal locomotion
tasks [9] [4]. As pointed out by Henderson et al. [18], the
implementation details can significantly impact the perfor-
mance of reinforcement learning algorithms, and thus here
we briefly describe our implementation.

Before each network update, we sample N trajectories of
maximum length T using the current policy, each trajectory
starts from a random pose sampled from the reference
motion. Tuples of the transitions and rewards are collected
as {st, at, st+1, rt}, where st = (xt, x̂t) and at = ut are the
state and action at time t from a trajectory. The value of st

Fig. 3: The actor-critic network used to parametrize the
policy and the value function. The output of the policy
network δa is added to the current reference angle of the
active joints. The result is then used as the target joint angles
for PD control.

is estimated using these samples,

V̂t =

T∑
t′=t

γt
′−trt′ + Vφ(sT+1).

The critic network parameters φ are updated by minimizing:

LV (φ) =
1

N

N∑
i=1

(
1

T

T∑
t=1

(V̂ i − Vφ(sit))
2).

where the superscript i indicates the ith trajectory sampled.
The actor network is updated using the estimated advan-

tage function:

Ât = V̂t − Vφ(st).

Let πold ← πθ and ρt = πθ(at|st)
πold(at|st) . We update the param-

eters θ of the actor network by maximizing the following
objective:

Lppo(θ) =
1

N

N∑
i=1

1

T

T∑
t=1

min(ρitÂ
i
t, clip(ρ

i
t, 1− ε, 1 + ε)Âit).

where clip(c, a, b) = c if c ∈ [a, b], or c = a if c < a, and
c = b if c > b. ε is chosen to be 0.2 in our implementation.

V. RESULTS

The results are illustrated in the associated video1. We
evaluate our method using a simulated model2 of Cassie
in the MuJoCo [19] simulation environment. Cassie is a
bipedal robot developed by Agility Robotics (Fig. 1). It
has 20 degrees of freedom and 10 actuators. In addition to
the 6 unactuated degrees of freedom for the floating base,
each leg of Cassie has unactuated spring joints, resulting in
a challenging control problem. A reference controller was
implemented using manually-tuned heuristics for producing
stable walking, and has its performance compared to that of
our learned feedback controller in a later section. A walking
reference trajectory is created from this reference controller
for Cassie. The reference trajectory contains two full foot-
steps of data, in which Cassie moves forward 0.5 meters from
its original location in about 0.7 seconds, sampled at 32 ms
intervals. We implement our neural network using Pytorch
[20], and the experiments are run on a eight-core computer
using a single thread. During training, the simulation rate
is set to 1 kHz to lower the computational requirements,
while during testing the simulation is run at 2 kHz to match
the control rate of the real robot. Target joint angles are
computed every 32 ms, giving us a policy query rate of
31.25 Hz, while the low level PD controller is run at the
same rate as the simulation.

We first collect 50, 000 states by sampling trajectories
starting from random poses in the reference trajectory using a
random policy. The mean and standard deviation is computed
from the collected samples. These values are then used to
normalize the inputs during training, similar to batch norm.

During training, we sample the action using a Gaussian
policy to encourage exploration, with the policy mean being
the outputs of the actor network and the covariance Σ being
diagonal matrix with diagonal elements set to 0.018. In test
time, we directly use the output of the actor network as the
policy.

The reward function used is defined as

r = wjointrjoint + wrprrp + wrorro + wspringrspring,

where rjoint measures how similar the active joint angles
are to the reference active joint angles, rrp, rro measures how
similar the pelvis position and orientation are to the reference
motion and rspring is an additional term to help stabilize the
springs on the shin joints. We currently set the weights from
experience without any special efforts to fine-tune it. The
joint differences are computed as rjoint = exp(−||xjoint −
xrefjoint||2). The rest of the terms are computed similarly,
and the weights are 0.5, 0.3, 0.1, 0.1, respectively. Note that
the reward is in the range of [0, 1]. We ignore the passive
spring-loaded joints in our reward calculation because the
deflections are relatively small due to the spring stiffness.

Episodes are stopped when a termination condition is met
or when they reach the maximum length T , which is set to
300 control steps (∼ 10 seconds) in all experiments. The

1https://www.youtube.com/watch?v=z3DMKQwt68Y
2https://github.com/osudrl/cassie-mujoco-sim

https://www.youtube.com/watch?v=z3DMKQwt68Y
https://github.com/osudrl/cassie-mujoco-sim

Fig. 4: Learning curves for training with different target
movement speeds. The speed is a function of the distance
the reference motion travels in a single stride (i.e. two steps).
The reference trajectory is 0.5 meter per stride.

termination condition we use is whether the height of the
pelvis is lower than 0.6 meter or higher than 1.2 meters,
or the reward is less than 0.6. We collect a maximum of
3, 000 samples. These samples are then used for updating the
actor and critic networks. The update is done by performing
stochastic subgradient descent on the loss functions described
in Sec.IV-C. We use a batch size of 128 and perform 64
updates using the Adam optimizer [21]. The step size for
Adam is initially set to 1e−3 for the actor network, and 1e−2

for the critic. These are then decreased by 1% after each
iteration, until the step size is less than 1e−4 for actor and
1e−3 for critic.

A. 3D Walking

We use our framework to train a controller of the 3D
simulated model of Cassie using a reference motion. The
resulting learning curve is shown in Fig. 4. The policy
reaches peak performance in the first 200 iterations, and we
stop training after 300 iterations, which takes around 2.5
hours. Please see the accompanying video for more results.
Without external disturbances, the learned controller can
accumulate a total reward of about 250 where the maximum
possible reward is 300.

B. Sensory Delay

We simulate sensory delay by feeding the robot state infor-
mation from a few milliseconds in the past. The controllers
perform well with a 5 ms delay, accumulating a reward of
247 on average over 10 runs. However the robot quickly falls
with a delay of 10 ms, although we are also assuming that
the delay impacts the PD-control loops.

C. Terrain and Perturbation Test

We further evaluate the robustness of our learned controller
by having the robot walk blindly across uneven terrain. The
terrain is generated in Mujoco using a sinusoidal function.

The height map is in the form z = h sinx, where z is
the height of the terrain, x is the distance in meters along
the direction the robot is heading, and h is the center-to-
peak terrain height ratio. We compare the robustness of our
learned controller to the reference controller on terrain with
different h values. The reference controller can walk across
sinusoidal terrain with h = 0.07 without falling, while our
learned controller can handle up to h = 0.15 without falling.
For the perturbation test, our learned controller can recover
from pushes that last for 0.2 s with a magnitude of 140 N in
the forward direction, 90 N in the backward direction, and
50 N from either the left or right side. In comparison, the
reference controller can cope with disturbances of up to 50 N
in the forward direction, 70 N in the backward direction, and
15 N to the sides.

D. Different Speed

To see if we could learn feedback controllers of different
speeds, we train different policy for different reference
motion by stretching and compressing the x position of the
pelvis in the original reference motion. Note that by varying
the speed in this way, the resulting reference motion is no
longer physically feasible, with the foot sliding along the
ground when it should be fixed. We compute solutions for
speeds of 0, 2, 3, and 4× the original reference motion. The
training for each speed takes 3 to 5 hours, and the system
can learn controllers that successfully track the desired speed
with reasonable motion without any additional hyperparame-
ter tuning. Fig. 4 shows the learning curves for training with
reference motions of different speeds. Note that the learning
process has become unstable for reference motion with a 4×
speed. We believe this result stems from the policy making
tradeoffs between following a physically infeasible motion
and tracking the desired speed.

E. Interpolation

We explore the possibility of having Cassie speed up
and slow down by interpolating between different policies
trained with different target speeds. Given an interpolation
parameter λ ∈ [0, 1], and policy π1, π2 with reference motion
X̂1, X̂2, we construct a interpolated reference motion as X̂ =
{x̂t = λx̂1t + (1 − λ)x̂2t|x̂1t ∈ X̂1, x̂2t ∈ X̂2}, and given
x̂t ∈ X̂ , the interpolated policy would be π(a|(x, x̂t)) =
λπ1(a|(x, x̂1t)) + (1− λ)π2(a|(x, x̂2t)).

With this interpolation scheme, we let λ = 1− 0.625tsim
until λ is equal to 0, where tsim is the clock in simulation.
We can successfully speed up and slow down the gait by
interpolating between a policy that walks 0.5 m per stride
and 1.0 m per stride, as well as between 1.0 m per stride
and 1.5 m per stride.

We also test if interpolating in this way can increase the
robot’s robustness on uneven terrain, which is similar to the
gait library used in [2]. We let the robot interpolate between
0.5 m per stride and 1.0 m per stride based on the current
speed of the pelvis, which naturally speeds up and slows
down when going up and down slopes. With an interpolated

policy, the robot can handle sinusoidal terrain of h = 0.22,
a significant increase over the non-interpolated case.

VI. CONCLUSION

We have presented a framework for feedback control of
bipedal walking that imitates a given reference trajectory.
By parameterizing the policy using a multi-layer neural
network and applying policy-gradient learning, we are able
to learn controllers that are robust to large disturbances. We
show that our framework can produce reasonable controllers
even with physically infeasible reference trajectories, such as
those resulting from simple retiming of the reference motion.
We investigate the robustness of the learned controllers by
modeling sensory delay, evaluating blind walking across
varying terrain, and applying large pushes to the pelvis while
walking. We further demonstrate the ability to interpolate
between policies that represent different walking speeds, and
show that using an adaptive interpolated policy yields more
robust gaits.

Our controllers still rely on full state information from
the robot, while in a real world scenario the state must
be estimated from noisy sensor measurements. We are cur-
rently extending our framework to work directly with output
(sensory) feedback. Furthermore, even though the learned
blind controllers can robustly handle unexpected terrain, we
believe robustness can be greatly improved by incorporating
terrain knowledge, i.e., via vision.

In principle, diverse behaviors can also be obtained via
additional reference motions, as we demonstrate by varying
the speed of the reference motion. We plan to generate
further behaviors such as jumping and running with the help
of reference motions, which could be designed or computed
in various ways. Another future direction would be to learn
a unified controller that can perform feedback control given
any reasonable reference motion, to allow for zero-shot
learning when given new motions for new tasks.

All our experiments are currently performed in a simulated
environment. As a next step, we plan to evaluate the resulting
policies on the real robot, possibly with on-the-robot fine-
tuning to cross the reality gap.

ACKNOWLEDGEMENTS

We thank Xue Bin Peng and Xiaobin Xiong for helpful
discussions. This work was funded in part by NSERC
Discovery RGPIN-2015-04843.

REFERENCES

[1] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 1366–1373.

[2] X. Da, O. Harib, R. Hartley, B. Griffin, and J. W. Grizzle, “From 2d
design of underactuated bipedal gaits to 3d implementation: Walking
with speed tracking,” IEEE Access, vol. 4, pp. 3469–3478, 2016.

[3] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Trans. Graph., vol. 36, no. 4, pp. 41:1–41:13,
July 2017. [Online]. Available: http://doi.acm.org/10.1145/3072959.
3073602

[4] W. Yu, G. Turk, and C. K. Liu, “Learning Symmetry and Low-energy
Locomotion,” ArXiv e-prints: arXiv:1801.08093v1, Jan. 2018.

[5] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen,
“Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection,” The International Journal of
Robotics Research, vol. 0, no. 0, p. 0278364917710318, 0. [Online].
Available: https://doi.org/10.1177/0278364917710318

[6] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” CoRR,
vol. abs/1710.06537, 2017. [Online]. Available: http://arxiv.org/abs/
1710.06537

[7] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learning to walk in 20
minutes,” in Proceedings of the Fourteenth Yale Workshop on Adaptive
and Learning Systems, vol. 95585. Yale University New Haven (CT),
2005, pp. 1939–1412.

[8] E. Schuitema, M. Wisse, T. Ramakers, and P. Jonker, “The design of
leo: A 2d bipedal walking robot for online autonomous reinforcement
learning,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct 2010, pp. 3238–3243.

[9] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne,
Y. Tassa, T. Erez, Z. Wang, S. M. A. Eslami, M. A. Riedmiller,
and D. Silver, “Emergence of locomotion behaviours in rich
environments,” CoRR, vol. abs/1707.02286, 2017. [Online]. Available:
http://arxiv.org/abs/1707.02286

[10] J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang,
G. Wayne, and N. Heess, “Learning human behaviors from motion
capture by adversarial imitation,” CoRR, vol. abs/1707.02201, 2017.
[Online]. Available: http://arxiv.org/abs/1707.02201

[11] Z. Wang, J. Merel, S. E. Reed, G. Wayne, N. de Freitas, and N. Heess,
“Robust imitation of diverse behaviors,” CoRR, vol. abs/1707.02747,
2017. [Online]. Available: http://arxiv.org/abs/1707.02747

[12] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3d dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
May 2016, pp. 1447–1454.

[13] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in Proceedings of the 12th International Conference
on Neural Information Processing Systems, ser. NIPS’99. Cambridge,
MA, USA: MIT Press, 1999, pp. 1057–1063. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3009657.3009806

[14] S. C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
2015 American Control Conference (ACC), July 2015, pp. 4542–4548.

[15] R. Tedrake, “Underactuated robotics: Algorithms for walking, running,
swimming, flying, and manipulation (course notes for mit 6.832).”
2018.

[16] X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: Does the choice of action space matter?” in Proc. ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, 2017.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” CoRR, vol.
abs/1709.06560, 2017. [Online]. Available: http://arxiv.org/abs/1709.
06560

[19] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct 2012, pp. 5026–5033.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
https://doi.org/10.1177/0278364917710318
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1707.02747
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1412.6980

	Introduction
	Related Work
	Background
	Reinforcement Learning and Policy Gradient Methods
	Feedback Control
	Feedback Control interpreted as Reinforcement Learning Problem

	methods
	State Space and Action Space
	Reference Motion and Simulation
	Network and Learning Algorithm

	Results
	3D Walking
	Sensory Delay
	Terrain and Perturbation Test
	Different Speed
	Interpolation

	Conclusion
	References

